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Aesthetic Learning for Image Synthesis
Michael Gircys

Abstract—Building on a previously constructed evolutionary
art system, the possibility of using machine learning techniques
to enhance system autonomy is explored. Pairing Genetic Pro-
gramming with aesthetic fitness, images are synthesized to allow
for feature extraction which permits a pair of classifiers to
learn aesthetic judgements. The experiments performed for this
report attempt to clarify configurations from Learning Aesthetic
Judgements in Evolutionary Art Systems by Li et al. [9], from
which tuning options and the effectiveness of such a system is
explored.

I. INTRODUCTION

ASIGNIFICANT problem for interactive evolutionary art
systems is user fatigue, where continued evaluation of

many evolved individuals becomes exhausting for the user [7]
[8] [10]. Common resolutions are to reduce population sizes
and the number of generations that a system evolves, however
this introduces new issues of genetic diversity. The ability to
capture and learn aesthetic preferences would be a great boon
for the resolution of user fatigue issues, and would provide
excellent resources for the development of aesthetic models.
It is for these reasons that Li et al. [9] proposed their system
of aesthetic learning within the context of texture synthesis.

In this system, a pair of classifiers can be trained using the
previous generation of evolved images. In Learning Aesthetic
Judgements in Evolutionary Art Systems, Li et al. [9] used a
collaboration of C4.5 decision trees and feed-forward neural
networks. Using PCA techniques to reduce a large array of
image attributes, both algorithms should be able to efficiently
classify an image as holding a certain discrete rating. The
report by Li et al. outlines much of the needed information to
duplicate their system’s configuration, however a number of
key implementation details have not been completely covered.
It the purpose of this report to both explore some of the
missing details, and to see if performance can’t be further
tuned.

This report will continue with a brief examination of the
former work by Li et al., and the ambiguities that we will
attempt to clarify. The previously developed interactive art
system will be introduced to provide a note on the capabilities
and limitations of the system’s image synthesis abilities.
The extracted features will be briefly noted, along with any
divergences from Li’s system. We can then discuss the learning
system proposed by Li, and any immediate limitations and
questions. With a number of concerns about the system
collected, we will define a number of experiments that may
increase the effectiveness of such a learning system, and then
verify if any performance increases were found. Finally, we
will summarize and conclude any found results.

II. PROBLEM DEFINITION & BACKGROUND

Previous work was completed at Brock University for the
COSC 5P71 (Genetic Programming) course where rudimen-
tary, interactive evolutionary art system (EAS) was developed.
Genetic Programming (GP) methods were used to evolve
images based on feedback produced in the form of user ratings.
Evolved images were rated on a discrete [1,5] scale, where a
higher rating suggests a proportionately better fitness score.

We hope to improve the user experience through the ad-
dition of a supervised learning system capable of making
aesthetic judgements. The ratings will constitute the possible
classifications that a supervised aesthetic learning system will
produce and learn from. This learning system should be able to
receive sets of evolved individuals - their ratings and extracted
features - and train classifiers to emulate the learned aesthetic
judgements. It is hoped that such a system will permit a user
to occasionally skip evaluating each individual themselves,
enabling them to produce a larger amount of candidate images
for their consideration. One such system was proposed in a
paper by Li et al. [9], and we intend to implement and further
configure such a system.

One critical motivation among many for the development
of an aesthetic learning system is to combat the issue of user
fatigue [7] [8] [10]. If a user is required to assess and rank
every individual, the work can become monotonous, and oth-
erwise unenjoyable and tiring. Consequently, both population
size and the number of generations used in a model may need
to be reduced to maintain user engagement. However, this can
greatly reduce genetic diversity, and require systems with low
convergence.

A. Procedural Texture Synthesis

A procedural texture uses a function to specify the colour
value of a pixel at each position. This approach may permit
composition, and produces an abstraction away from specific
details. Texture synthesis and evolutionary art has been ex-
plored since 1991 with the work of Karl Sims [1] [5]. Genetic
programming representations were used to symbolically en-
code and evolve 2D pixel colour evaluating functions (similar
to Figure 1).

B. GP Language and Settings

The parameters used for the GP system are based on the
defaults proposed by Koza [12], and further empirically tuned
from previous academic course work.

A few noted variances between our developed system and
Li’s includes the population size, initial maximum tree depth,
and breeder pipeline settings. As Li’s system displays smaller
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Fig. 1: Texture Synthesis with GP

images, an increased number of them may be shown on
screen; the population in our system was chosen to match the
maximum that could be displayed on a 1920x1080 resolution
screen. A population of 56 vs 67 may reduce the amount of
samples provided to the learning system after each generation,
and should be considered. The use of an initial maximum
tree depth of 5 is likely not substantially different from 6.
However, Li does not specify a initial minimum tree depth.
As our experiments aim to produce simple image character-
istics, a low initial tree depth should not be problematic. Li
reports finding high fitness and classification ability after 20
evolutionary generations. We will examine 30 generations to
further confirm any convergence or divergence on aesthetic
values.

A key notable difference can be found among the breeder
pipelines of this system and Li’s. Li et al. permit 4 unique
mutation operators which can affect how coarse or fine the
resultant mutation will appear. On inspection of their colour
mutation, it would appear that each individual also tracks
which colour scheme in which the individual’s phenotype
should be rendered. In an attempt to provide for a finer
mutation operation, our system has included an Ephemeral
constant adjustment operation as a possible breeder option.
The report by Li et al. does not appear to mention the breeder
operation frequencies, outside of the fact that it can be adjusted
by the user in a [0%,100%] range, which our system also
supports. For the purpose of the automated testing, breeder
pipeline probabilities are outlined in Table I.

The GP system developed for the report shares a set of
common mathematical function nodes between it and the
system by Li. In comparison to Li’s EAS (evolutionary art
system) [9], we provide a number of additional mathematical
operators, but omit a few of the noise functions, and the pair
of positionally dependant geometric operators (spiral, circle).
A full list of functions and terminals is provided in Table II.

Experimentation will be done to ensure sufficient express-
ibility within the system.

III. LEARNING ALGORITHM & METHODOLOGY

A. Aesthetic Features

Before considering the specifics of any classifier models,
one should give considerable consideration to the features

TABLE I: GP Default Parameters

Parameter Value
Generations 30

Population Size 56
Generation 0

Builder Ramped Half & Half
New Node Depth [2,6]
Grow Probability 50%
Parent Selection

Elitism 1
Selection Tournament

Selection Size 3
Node Selection

Terminals 10%
Non-Terminals 90%

Breeder Pipeline
Reproduction 0%

Crossover 80%
Mutation 10%

Ephemeral Mutation 10%
Crossover Settings

Max Depth 17
Attempts 1

Mutation Settings
Max Depth 17

Attempts 1
Builder Grow

New Node Depth [5,5]
Ephemeral Mutation Settings

Change Factor [0%, 1%] Max

TABLE II: GP Default Language

Sign Description
Variables

X Current horizontal position
Y Current vertical position

Ephemerals
E[#] Random constant in [0,1]
E[#] Random constant in [0,10]
E[#] Random constant in [0,100]

Math, Unary
- Sign change

sin Trigonometric cosine (taking radians)
cos Trigonometric sine (taking radians)
tan Safe trigonometric tangent. Defaults to 0
exp e (Euler’s number) raised to p1
abs Absolute / unsigned value
avg Average of both parameters

floor Round up and truncate
ceil Round down and truncate

log 10 log10 of p1
log e loge of p1

sqrt Square root
pow2 p1 to the power 2
pow3 p1 to the power 3

Math, Binary
+ Arithmetic addition
- Arithmetic subtraction
* Arithmetic multiplication
/ Safe division (0 divisor ⇐ 0)

max Greater of the two parameters
min Lesser of the two parameters
pow p1 to the power p2

Math, Ternary
lerp Linear interpolation of p3 ∈[0,1] within [p1,p2]

Conditionals
IfGT if( p1 > p2 ) then p3 else p4

which will be used to analyse the classified object. Li proposes
25 individual features. Each feature is extracted from each
defined window of the image: the full image, top-left, top-
right, bottom-left, bottom-right, centre (see Figure 2. This
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gives 150 individual measures per image.

Fig. 2: Feature Windows

Many other features are available, particularly those for
colour frequency and edge points. We will be focusing on
recreating the features as described by Li, with exceptions
noted as required.

Features f1 through f9 include the first 3 movements of
the image window colour. Within the HSV colour model,
f1 describes the mean hue values, f2 describes the standard
deviation of the hue values, and f3 describes the skewness (or,
asymmetry) of the hue values [13]. Similarly, f4-f6 is found
on the saturation channel, and f7-f9 on the value / brightness
channel.

Benford’s Law (or, first-digit law)suggests that sets of natu-
rally collected data should have the digits in their decimal rep-
resentation follow a known distribution [6]. We will consider,
for a feature, the distribution of the Y709 lightness channel
as it compares with a natural distribution. With the expected
frequency of each digit d having (according to Benfor’d Law)
PBL(d), and actual frequency P (d), we calculate

f10 =
9∑

d=1

|P (d)− PBL(d)|

It was noticed that the formula as described in [9] had an
oversight in permitting signed increments. As no increment
was squared or cubed, the feature should have always been 0.
This was likely a typographical error, and has been corrected
in our implementation.

Local binary patterns are common texture features which
are enjoyed due to their relatively low processing cost. Each
pixel compares itself to each of its neighbouring pixels. Based
on the relative position between pixel and neighbour, each
neighbour is responsible for activating a bit in an 8 bit result.
If the difference between the centre and neighbouring pixel
exceeds a threshold, the corresponding result bit is active. Our
implementation uses a threshold value of 1/256. The set of
local binary patterns for all image pixels is used to create a
histogram with 4 bins ([0,63],[64,127],[128,191],[192,255]),.
Each bin can be used to find a mean and standard deviation,
give the values for features f11 to f14, and f15 to f18
respectively. Our implementation uses a left to right, top down
scan for ordering of the bit positions amongst pixel neighbours,
with the top left pixel as most significant.

Complexity has been found to frequently relate with many
models of aesthetics [4]. As such, we can consider using the
entropy of discretized channel values as measures of image
complexity. For features f19 to f21, we can use the complexity
of the hue, saturation, and brightness channels across 360, 100,

and 100 bins respectively. The RGB complexity could also be
considered if we first quantize the distribution. By reducing
each RGB channel to 3 bits, we can produce a complexity
meaasure f22 with 512 bins. Additionally, we can consider
the complexity of Y709 lightness in 256 bins for feature f23.

The last two features Li et al. propose have been omitted
due to implementation complexity and time constraints. The
Machado and Cardoso aesthetic model has proven to yield
interesting results as a fitness measure. It relies on a ratio
of image complexity to processing complexity as determined
by JPEG compression and fractal image compression. While
an interesting model, it has a complex implementation, and
is absent from our system. In a similar vein, another omitted
feature measure was the ”order” of the image, as determined
by fractal compression ratios and times. It is believed that the
simplicity of the fixed blue hue fitness scheme should remove
the immediate need for these features.

B. Adaptive Learning Model

The adaptive learning model employed for the experiments
mimics the one brought forward by Li et al. in their work
Learning Aesthetic Judgements in Evolutionary Art Systems
(Figure 3) [9]. Li was not the first to experiment with learning
systems for aesthetic preferences; Much work was done by
Machado and Penousal [7], as well as many others [2] [11].
However, the details provided by Li et al. allowed for a
seemingly easy replication of the system.

The learning system relies on two classifiers: a C4.5 de-
cision tree, and an multilayer perceptron. Both are efficient
classifiers capable of handling multiple exclusive classes.
Following Li, the developed system makes use of the Waikato
Environment for Knowledge Analysis (WEKA) library. The
J48 approximation of C4.5 decision trees are employed, as is
their implementation of multilayer perceptrons.

The system is initialized after the first time the user has
provided an evaluation to an evolved population. Once the
user feedback is received, a new decision tree and a new
feed-forward neural network are produced and trained. Each
rated image provides an expected class (the rating) and a
number of extracted features which were computed shortly
after phenotype conversion. At each generation (after the first),
the user may choose to defer the image ratings to the learning
system. The stronger classifier, as determined by classification
accuracy, will be used to classify and provide ratings for the
current generation of individuals.

One ambiguity in the paper by Li is the lack of details
regarding the persistence of the classifiers across generations.
As it was stated that the classifiers were produced using
WEKA defaults, and insofar that neither the decision tree
nor the multilayer perceptron are update-able models within
the WEKA library, it would follow that the classifier models
must be regenerated each time new data is received. However,
Li et al. also mention that by the 10th generation of user-
provided fitness ratings, 670 images are used for training. One
considered possibility is that the previous training examples
are stored and used for and later model generation. To asses
whether or not the previously provided user classifications will
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aid in generation of the next classifier instances, a number of
experiments will be performed.

We produce classifications in the form of a [1,5] discrete
rating, where more appealing images should receive higher
values. The learning system could have produced classifica-
tions in a continuous range, as the underlying rating and fitness
conversion could easily be interpreted. However, the decision
to remain with nominal classifications was favoured based
on the input method provided to the user. It is quicker for
users to rate images along a nominal set than it would be
for them to specify larger precision. Both methods could lead
to the introduction of noise. The trade-off was considered,
and a compromise was reached by expanding the possible
classifications to 5 from Li’s 3.

Li et al. were able to seed the learning system with external
reference images, at which point the learning system classified
each generation without further adaptation. However, this falls
out of our current experimental scope.

C. Feature Reduction and Standardization

Further ambiguity of Li’s model is found in the details of
the feature reduction methods. The difficulty with searches
in high-dimensional spaces is reinforced, and with the 150
proposed extracted features, a strong argument is made for
dimensionality reduction within the system.

Li had stated that he had employed the WEKA Ranker
search method, using the entropy-based InfoGainAttributeEval
function to guide the search. However, at no point does Li
mention the final count of attributes used. Further, Li mentions
that the perceptron classifier includes a hidden layer, but we
can gain no insight into the feature count, as the hidden layer
sizes are also absent. Variable numbers of reduced attribute
counts will be explored.

The system produced by Li et al. does not specify any
means of normalization or standardization, though the benefits
may be found with them. Some difficulty could arise in
finding the proper ranges of each feature, particularly as we
will be training on small sets of data. Some exploration into
the effectiveness of normalization in this application will be
considered.

D. Analysis Methodology

While the intended purpose of the system is to learn the
highly subjective aesthetic preferences of the user, a number of
concessions will need to be made to provide a more consistent
testing environment. In an attempt to remove subjective vari-
ance from the users rating, and the consequential noise, a fixed
fitness formula (Equation 4) will be used in place of the user’s
aesthetic fitness. A rating of 1 to 5 would be given based on
the evolved image’s mean hue, and its distance from a known
measure of blue. It was expected that such a simple fitness
measure would be easily learned by the adaptive model, and
would provide a basis from which additional, more complex
fitness models could be evaluated.

Key performance indicators of evolutionary algorithms re-
late to fitness scores among the evolved individuals. For
comparing final performance of the evolutionary art system,

Fig. 4: Fixed Fitness Scheme: Blue Mean Hue

huecurrent = f1

huedesired = (240/360)

dist ∼= (Huecurrent −Huedesired) mod 1

rating = [(dist ∗ 8) + 1]

we will be comparing the mean fitness of individuals in the
last generation which received its rating through a fixed fitness
scheme.

While the mean fitness provides a good measure of perfor-
mance pertaining to the users final goal, the specific experi-
ments performed also aim to improve the classification abilities
of the adaptive learning system employed to simulate a user’s
aesthetic preferences. While the two measures are expected to
be related, the periodic use of the fixed fitness scheme may
provide too much direct guidance to the evolutionary model,
instead of an indirect guidance via the classifier. Further, as
the adaptive classification system uses both decision trees
and artificial neural networks, the fitness of each individual
classifier can not be displayed through the single fitness
measure. To these ends, an additional metric will need to be
explored in conjunction with fitness.

To gauge performance of individual classifiers, a number
of other measures are tracked per classifier for each experi-
ment. We have available the amount of correct and incorrect
classifications, as well as a full confusion matrix between
the 5 classes. It should be noted that reliance on the correct
amount of classifications may not be an adequate measure
for all cases. A classifier which seems to perform well but
only ever assigns one classification may not be showing a true
reflection of the classifier’s performance; the samples could be
evolved to have a higher distribution of that class among them
through external influence. A number of the other performance
measures provided through confusion matrix aggregates may
need to be examined.

One concern is the lack of separate training and testing
data sets. As the samples are expected to be provided through
user feedback, the GP population size has been kept low to
maintain a consistent environment where user fatigue would
be a significant factor. However, with the low amount of
samples, it is not feasible to partition the training data in that
circumstance, as there is a high likelihood of each sample to
carry a meaningful decision.

IV. EXPERIMENTS

The paper by Li et al. alleges that the default parameters
provided within the WEKA library were maintained for their
tests. As some changes may have occurred between versions
of the library, the key settings for each classifier are outlined
in Tables III and IV.

For all experiments, a reduced sample size of 5 runs
per experimentation configuration is used. While a larger
size would be ideal, the time needed to run 30 generations,
coupled with minimal but required interaction for log archival
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Fig. 3: The Learning System Adaptive Classifier Model

places limits on the feasibility of larger run sizes.

TABLE III: Learning System C4.5 Tree Configuration

Parameter Value
confidenceFactor 0.25

minNumObj 2
numFolds 3

reducedErrorPruning False
saveInstanceData False

seed 1
subtreeRaising True

TABLE IV: Learning System ANN Configuration

Parameter Value
Hidden Layer Topology 30,15

Activation Function Sigmoid
Learning Method Backpropagation

Learning Rate 0.3
Momentum Rate 0.2

Epochs 500

TABLE V: Learning System Common Baseline Configuration

Parameter Value
Generations 30

Population Size 56
Normalize Inputs True

Final Feature Count 15
Reuse Old Data False

Fixed Fitness Scheme Full-Image Blue Mean Hue
Fixed to Classifier Fitness Pattern 1 - 3

As we are using a predefined fitness scheme to remove
subjectivity from the classification performance measures, we

will also need to set intervals which determines whether each
generation makes use of the learning system or the fixed fitness
scheme. This should simulate a user providing intermittent
feedback alongside their deferral to the classifiers. The first
set of experiments will determine the effects of extending
the number of generations since simulated user ratings are
provided. We will begin with a baseline, where every genera-
tion receives user feedback, and then examine final generation
fitness and classifier accuracy when user feedback is provided
every other round, and every third round.

Further experiments will evaluate changes to the feed-
forward neural network classifier used by the system. While
adjustments may be made to the C4.5 decision tree classifier,
it is outside the scope of this report.

A second group of experiments will examine the effects
of adjusting the number of extracted features and the hidden
layer topologies. From the baseline, which used a 15-30-10-5
topology, we will also examine 15-15-5, and 8-8-5 topologies.
While Li did not specify the size of the hidden layers used
in their report, they had mentioned that a single layer was
used. Given that the default hidden layer size is in terms of
the number of attributes and classes, and that the reduced
number of attributes was not provided, an estimate of 25
((25 + 3)/2 = 14 hidden nodes) and 15 ((15 + 3)/2 = 9
hidden nodes) was speculated when considered topology
options. A 25-15-5 topology was omitted, as the simplistic
blue hue fitness scheme can be produced from a single
measure, and reinforced by up to 5 additional measures.

A third experiment will evaluate the effectiveness of
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retaining training samples from previous generations. The
parameters for the second experiment will be reused with
single exception of a training sample retention flag.

While previous experiments aimed to keep the same learn-
ing and momentum rates as used by Li et al., the lack of
progress leads us to consider alternate configurations of these
rates. Using the best found configuration from the previous ex-
periments, we will evaluate the effects of adjusted learning and
momentum rates. Training samples from previous generations
will be used on a 15-30-10-5 network. Based on previous work
with artificial neural networks, intermediate values of learning
rate and momentum rate appeared to perform well. We will
consider learning rates of 0.5 and 0.8, and momentum rates
of 0.2 and 0.4, in comparison to the baseline measure.

V. ANALYSIS

We started with a baseline that used a fixed fitness measure
to ensure that the GP system had the expressiveness to
generate the type of images required for the experiment. For
the first set of tests, the fixed fitness measure was a simple
mean colour distance. We ranked the images based on the
full image mean hue’s distance from RGB absolute blue.

In the performance graphs include (such as Figures 6, 7,
and 8), the bold smoothed lines represent a default local
polynomial regression fitting from R among the data points.
Where the bold red line shows mean population fitness, green
shows mean decision tree classification accuracy, and blue
shows mean perceptron classification accuracy.

We can clearly see in Figure 6 that as we increase the
frequency of using the learning system for fitness assignment,
we have a final population which is less fit in terms of our
experimental fixed fitness metric. This would seem to indicate
that the classifications from the learning system are rather
poor, and that we are not favouring those individuals with the
ideal hues as strongly as we could be. The more preferable
individuals found in the final generation may just have been
carried over from the last generation with fixed fitness through
coincidence.

This is further indicated by suspicious mean fitness values.
On generations rated by the classifier, mean population fitness
seems to consistently return to values produced from a single
rating value. That is, it seems likely that the classifier is only
returning a single classification, regardless of features.

With further experiments, the alternation between 1
generation rated through a fixed fitness scheme, and two
generations rated through the adaptive classifier is maintained.
This appeared to provide both a minimal amount of correct
selective pressure from the fixed fitness scheme, and sufficient
examples on which the classifier could be trained. A smaller
ratio would not permit stronger conclusions about the
classifiers, as it would be more likely for performance gains
to come from the accuracy of the fixed fitness scheme.

In varying the network topologies, from hidden layer
changes and dimensionality adjustments, no immediate

Fig. 5: Experimenting with Fixed-Fitness Frequency

(a) Baseline 1:0 Fixed-Fitness Results

(b) Baseline 1:1 Fixed-Fitness Results

(c) Baseline 1:2 Fixed-Fitness Results

improvements were noted. By observing Figure 7, it might
appear that the 15-15-5 topology performed worst, with
the baseline 15-30-10-5 doing well, and similarly for 8-
8-5. Seeing that the 8-8-5 topology didn’t do drastically
worse than the baseline, and perhaps even showing slight
improvement, one might suggest overfitting with larger
topologies. However, we might not allot serious merit to this
idea, as the significantly larger 15-30-10-5 topology showed
comparable performance. Ultimately, it is disheartening that
any variation seen in performance does not carry heavy
statistical significance.

It was hoped that by permitting the reuse of older genera-
tion’s training cases, we could increase the total sample size
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Fig. 6: Performance of Fixed-Fitness Frequency Experiments

Fig. 7: Performance of Topology Variations
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Fig. 8: Performance of Topology Variations, Training Samples Reused

for each newly created classifier. With more training samples,
the ideal case would also permit for greater classification
accuracy. Some concerns held beforehand were that a user
would rate images relative among those presented in a single
generation. With the fixed fitness scheme providing an absolute
rating regardless of the best and worst individuals seen in a
given population, it was expected that sample reuse would be
strictly beneficial.

The largest effects of this adjusted sample reuse scheme
should be apparent when ranking the later evolved generations.
Unfortunately, we once again see little change from the pre-
vious experiment set. There is still extremely heavy tenancies
to rank all images in a generation uniformly. No statistically
significant performance changes could be found.

One mildly interesting note, is that the mean classification
accuracy appeared to show similar curvatures for a given
configuration both with and without sample reuse. The actual
significance of this is likely low, as decision tree classification
accuracy shows similar effects despite not being directly
adjusted (though, the resultant effect on mean fitness would
less directly influence the decision tree performance).

As the configuration stated in the report by Li et al. was not
as effective as hoped, a final attempt at improving classification
ability through learning and momentum rate adjustments was
attempted and outlined in Figure 9. While a few of the
runs did appear to show some convergence, and completed
with an array of individuals which had a generally blue hue,
no conclusive improvements were found. The frequency and
spread of the improved individuals did not appear to have
any substantial significance, and was likely produced purely
through fortunate coincidence.

Seeing that we were unable to get any reasonable classifi-

cation of straight blue images, it seemed unlikely that more
complex fixed fitness schemes would prove more successful.

VI. CONCLUSION AND FUTURE WORK

Despite any measured performance seen in models which
reuse previous generations’ training data, such an approach
may require additional consideration. While such a method
worked will with our fixed fitness measure, its use in con-
junction with a user may lead to early convergence. A user
may very well change what attributes they seek mid process.
A model which retains too much early generation data may
not be able to adapt. Further, as ratings are typically relative
among only the individuals presented at any given time,
old training data will be inherently noisy at best, as what
was an ideal candidate in one generation may be completely
inadequate in a later generation. One potential workaround to
the issue of old data may be to implement an ageing system,
where data is only retained for a number of generations.

Neither adjustments to topologies nor learning rates ap-
peared to positively affect classification performance in any
significant manner.

In consideration of the difficulty found in classifying images
based on extremely simple (single-feature) fitness criteria,
a full multi-user experiment like the one discussed by Li
may need to be held until the configurations for the learning
system accuracy is matured. Much further experimentation in
more controlled fixtures and review of implementation details
may be required to achieve the consistent 80%+ classification
ability reported by Li.
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Fig. 9: Performance of Rate Variations
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