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Abstract—The focus of the efforts outlined in this paper were
to compare the clustering abilities of the K-means clustering
algorithm across various distance measures and centroid counts.
A number of synthesized 2D coordinate points were used as
sample data, which were measured using the Dunn Index
calculation.

I. INTRODUCTION

THE PURPOSE of these experiments was to evaluate the
abilities of the k-means clustering algorithm, and the

effectiveness of the Dunn Index as a performance measure.
Four distance measures are evaluated for each of four data
sets to evaluate their effect on Dunn Index performance, where
the known optimal K value is used in addition to a number of
lesser and greater k values.

The data used for comparison of Dunn Index measures
are the S1 to S4 sets from Fränti and Vermajoki [5] and
republished by the University of Eastern Finland’s Speech
and Image Processing Unit. These are synthetic generated
points sets with 5000 samples, known centroids, and known
variances. In transition from S1 along to S4, we see the known
centres of the data points move closer together, which should
provide a good variety of group noise, and permits us to
better analyse the results when groupings are not linearly
separable. The points are in Euclidean space and should be
measurable through partitioning on proximity, which is ideal
for application with the K-means clustering algorithm.

This report will continue with a review of the K-means
clustering algorithm, the distance metrics experimented with,
and the Dunn Index calculations considered for performance
evaluation. Following the k-means clustering algorithm and
equations reviews, we will present and evaluate the clusters
found from the execution of the algorithm, and analyse the
effectiveness of the Dunn Index. Finally, we will summarize
the results found and conclude the experiments.

II. K-MEANS ALGORITHM, REVIEW

The K-means clustering algorithm is a quick, partition-
based clustering algorithm which can provide the assignment
of each given dataset point to one of k groups, and the
centroids of each group. K-means has an advantage over some
other clustering methods in its speed; the computation and
assignment of groupings is done through a relatively quick
distance check.

K-means expects both the set of input points, and a provided
value k, which specifies the number of discrete groups to
which a point may be assigned. On initialization, k centroids
are produced either through random selection of the provided
data points, or through random generation of each continuous

feature for k points. Each data point is then assigned a
group based on the centroid with nearest proximity. With
the groupings established, the centroids are then updated to
take the mean of each feature across all points in its group.
The process of assigning groups and updating the centroid is
repeated until all points remain in the same group after an
iteration. Pseudo-code for the K-means clustering algorithm
can be found in Figure 1.

Algorithm 1 K-Means Clustering Algorithm

Require: K > 0, and Points ̸= ∅

{ Initialize Centroids }
for c = 1 to k do
Centroidsk ⇐ random point ∈ Points
Centroidsk.Group ⇐ k

end for

{ Refine Cluster }
GroupingsChanged ⇐ TRUE
while GroupingsChanged = TRUE do
GroupingsChanged ⇐ FALSE

{ Assign Group }
for all point ∈ Points = {d1, . . . , dn, Group} do

newGroup ⇐ Centroidsi.Group where
dist(point, Centroidsi) =
min(dist(point, Centroidsj), 1 ≤ j ≤ K)

if newGroup ̸= Group then
GroupingsChanged ⇐ TRUE

end if
Group ⇐ newGroup

end for

{ Update Centroids }
for all centroid ∈ Centroids = {d1, . . . , dn, Group}
do

Pointsi = {p ∈ Points|p.Group = Group}
for x = 1 to n do
dx = mean(Pointsi.dx)

end for
end for

end while

A. Distance Metrics

The performance of the K-means clustering algorithm will
be measured on the same data set over four main distance
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metrics. With data in (2D) Euclidean space, We will evaluate
distances using the three most notable Minkowski p-norms [3]:
1-norm (Manhattan distance), 2-norm (Euclidean distance),
and ∞-norm (Chebyshev distance). Additionally, we will also
evaluate Canberra distance, which is a weighted variant of
Manhattan distance [1]. While the points evaluated are in (2D)
Euclidean space, each distance metric can be generalized for
arbitrary dimensions/features. The equations for the evaluated
distance metrics are outlined in Figure 1.

Fig. 1: Distance Metric Equations

DCanberra(a, b) =

n∑
i=1

|ai − bi|
|ai|+ |bi|

DManhattan(a, b) = (
n∑

i=1

|ai − bi|1)1

DEuclidean(a, b) = (
n∑

i=1

|ai − bi|2)1/2

DChebyshev(a, b) = lim
p→∞

(
n∑

i=1

|ai − bi|p)1/p

= max(|ai − bi|, . . . , |an − bn|)

Each of the various distance metrics will obviously have a
different bias, and will provide different clustering results for
each point on our 2D plane. Generally, Euclidean distance
is the most intuitive, and most common measure used for
physical measurement. Manhattan distance reflects movement
constrained along the axis directions (and is thus aptly named
due to its relation to traversal of grid-like Manhattan streets),
and Chebyshev distance permits traversal across multiple axis
directions simultaneously without loss (such as that count
of spaces a King may traverse within the game of Chess).
Canberra distance adapts Manhattan distance, where distance
is inversely weighted by individual distance of each dimension
from the origin. To help visualize some of the bias differences
of the distance functions, a type of Voronoi diagram has been
provided in Figure 2. The same set of points has been used
for a more consistent comparison, and the intensity at each
point is a measure of the distance (of the given metric) to the
closest red point.

B. Validity Measures

The key measurement that will be explored for clustering
performance is the Dunn Index. As shown in the equations
in Figure 3, the Dunn Index is a ratio of the minimum inter-
cluster distance to the maximum intra-cluster distance. The
index provides a result in [0,∞], with optimal results giving
larger values, and indicates that a group of clusters is well
separated and compact. Previous experimentation from [7]
showed the Dunn Index as having an approximate accuracy of
50% for determining optimal cluster groupings for a specific
data set.

Fig. 2: Voronoi Examples of Distance Metrics

(a) Voronoi: Euclidean Distance

(b) Voronoi: Manhattan Distance

(c) Voronoi: Chebyshev Distance

(d) Voronoi: Canberra Distance
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The original Dunn Index measure as used by Dunn [2] will
be used. Alternative Dunn-like indices are available, which
use various other metrics for the calculation of the intra- and
inter-cluster distances. The original measure uses the single
linkage measure for inter-cluster distance, though complete,
average, and centroid distances would be valid alternatives.
For intra-cluster distance, maximum distance between points
will be used, though mean distance, and the sum of distance
from the mean are also feasible.

Within the experiments performed for this report, the met-
rics used for the calculation of distance between any two nodes
will be the same metric as used within the k-means clustering
algorithm.

Fig. 3: Dunn Index Equation

∆(Pi) = max
a,b∈Pi

D(a, b)

δ(Pi, Pj) = min
a∈Pi,b∈Pj

D(a, b)

DunnIndex =

min
1≤i<j≤m

δ(Pointsi, Pointsj)

max
1≤k≤m

∆(Pointsk)

III. RESULTS AND DISCUSSION

In measuring the performance of the clustering algorithm
with respect to the Dunn Index measure, two variables were
adjusted uniformly for each data set. For each of the four data
sets, k-means clustering was performed using each of four
distance metrics with 5 distinct values for k. Data sets S1, S2,
S3, and S4 from Fränti and Vermajoki [5] were used clustered
using the optimal k count of 15, and also k values of 9, 12,
18, and 21. Each of the data sets and k values were evaluated
over 10 runs using Euclidean, Manhattan, Chebyshev, and
Canberra distance metrics. Dunn Index measures used the
respective clustering distance metrics of the run which they
were evaluating. The random number generator seed was
used for all experiments on a given run number to provide
consistency with visual comparisons.

Figure 4 provides a box plot overview of the measured
Dunn Index values for each data set, distance metric, and k
value.

With a cursory inspection of the produced Dunn Index
measures, it is difficult to deduce any clear patterns with k
values which are consistent over all data sets. However, a one-
way ANOVA across all samples shows a significant correlation
(Table I) between chosen k value and Dunn Index, which was
further strengthened when the Canberra samples were omitted.

TABLE I: One-Way ANOVA Summary - K-value to Dunn
Index

Source SS df MS F P
Dunn Index 267 1 266.56 15.1 0.0001

Residuals 14133 796 17.71

Fig. 4: Dunn Index Comparisons
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The true optimal k-value appeared to perform best as the
data points were grouped closer together, as in the later two
sets S1 and S2. In these near proximity sets, performance
peaked at k = 15, and displayed an somewhat evenly de-
creasing curve as k positively or negatively diverged. Some
curious behaviour can be seen in the results on S1, where
smaller k performs much better then larger k, and even better
than the expected optimal k = 15. The original Dunn Index
measure, on these data sets, would appear to more heavily
penalize smaller inter-cluster distance, than it does large intra-
cluster distance. In sets with greater distinction between known
groups, the preference for lower k will show optimal results
with many centroids between two or more obvious groupings
(as in Figure 7).

Given that the optimal k = 15 performed poorly, it is
apparent that a number of the centroids were placed too
closely, and thus the significance of initial centroid placement
should not be overlooked. A number of optimizations for
initial centroid placement have been considered by various
other authors [6].

One immediate observation about the different distance
metrics is the relative small performance measures with the
Canberra metric. The distance values produces by the Canberra
distance metric were generally much smaller, as the value is
weighted by the sum of distance from the origin of the two
points. As the data points from the S1 through S4 set were
in a [0, 107] range, any distance values would be quite small.
However, as the Dunn index measure is a ratio of intra- and
inter-cluster distance, it would be expected that the scaling of
the component distances should not have a substantial effect on
this measure. Clearly, however, this distance scheme tends to
provide a smaller inter-cluster, or larger intra-cluster distance.
This already suggests that there may be potential issues in
using a Dunn Index across different distance metrics.

A traditional ANOVA test to evaluate confidence of the
effect of distance metric is not suitable here, as the distance
metrics are categories, and non-numeric. While Canberra dis-
tance generally produced a much lower Dunn Index measure, it
should be noted that it was the distance metric responsible for
the only fully accurate centroid placement. Canberra excluded,
none of the distance metrics appeared to dominate any other
metric across all of the data sets. Chebyshev distance appeared
to have a higher performance variance with the optimal k-
count, and marginally lower overall average performance in
most sets, though it appeared to perform slightly better as
the set numbers increased, and data points were spaced more
closely. Euclidean and Manhattan distances appeared to have
similar overall means for this data set. Euclidean distance,
except in the case of S1, tended to have better performing
outliers, though the statistical significance of these should not
be substantial. Generally, the choice of the three main distance
metrics did not appear to have substantial bearing on resultant
Dunn Index measures, nor on the correct placement of cluster
centroids.

The cluster for S1 found to be visually most reflective
of the true centroids (Figure 5) had a Dunn Index value of
0.022450103, which was tied for the 30th worst of the 200 runs
on that data set. Comparing the best and worst plots of the S1

Fig. 5: S1 Visual Best

Fig. 6: S1 Worst Dunn Index

Fig. 7: S1 Best Dunn Index
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data set, the graph of the cluster holding the smallest Dunn
Index value (Figure 6) does indeed show a poor coherence
within partitions. In some areas, visual clusters are shared by
multiple centroids, and in others, a single centroid bridges
multiple visible clusters. Substantial portions of one group can
be owned by a far-off centroid. Yet the plot holding the best
Dunn Index (Figure 7) holds examples of these failings as
well. Using three centroids shy of the optimal count, there
are three centroids responsible for bridging pairs of visual
point groups. The visually best plot (Figure 5) has near-perfect
placement of centroids, which is the critical, desired result of
the k-means algorithm, but is penalized heavily by a small
handful of outlier points produced as artifacts from the natural
fields about the distance metrics.

Similar results were found with the additional data sets.
While the visually worse plots appeared to have substan-
tially lower Dunn Index magnitudes, an overwhelmingly large
amount of plots with suboptimal centroids ranked much higher
than the plot with accurate centroid placement. As such, it
is difficult to make any assertions regarding the necessity of
Dunn Index measures for optimal centroid placement or plot
aesthetics. With the S1 through S4 data sets, the Dunn Index
did not appear to hold any meaningful correlation to better
clustering or visuals therein.

IV. CONCLUSION

While perhaps difficult to initially visualize, a strong cor-
relation appears to exist between chosen k-value and Dunn
Index performance. On the S series data sets, the original
Dunn Index measure (with single-linkage inter-cluster, and
maximum distance intra-cluster measures) on these data sets,
would appear to prefer larger, less-concise groupings over
smaller groupings that are in close proximity to another. With
more distanced points, performance goes to larger k, where
values both greater and lesser than optimal k are detrimental
in more tightly packed sets.

The Canberra distance metric did frequently produce rela-
tively low Dunn Index measures, but performed sufficiently
under visual inspection. With the exception of the lower
scoring Canberra distance, the choice of metric did not appear
to show substantial correlation with Dunn Index measures, and
no correlation was found relating the metrics to aesthetic plot
appearance nor correct centroid placement.

While it was seen that plots from clusters with extremely
small Dunn Index values were less visually appealing, a
number of counterexamples were explored which disproved
the converse. A higher Dunn Index value did not correlate
with more optimal centroids nor with more aesthetic plots
of the points. Rather, small numbers of outlier points, with
minor effect on the centroids and plot appeal, appeared to
have a heavier than desired influence on the original Dunn
Index validation measure. The large amount of plots which
ranked higher by Dunn Index than a known optimal solution
suggests a weak correlation with Dunn Index and clustering
performance, if any, on the data sets explored.
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