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1 Introduction

The purpose of this report is provide a non-exhaustive review of publications
relevant to the synthesis of textures from evolutionary methods. Specifically,
works which present fundamental or novel approaches towards the advancement
of artificially evolved artistic and aesthetic images are considered, and are sur-
veyed and briefly summarized to provide a snapshot of the field. We examine
previously considered representations, languages, and fitness metrics which have
shown promising results in previous experimentation.

The concepts of natural and artificial selection are fundamental to the vi-
sion of our current world. Such a simple but powerful phenomenon is directly or
indirectly responsible for every aspect of our modern life. Individuals who per-
form and adapt well to their environment are better able to produce scions with
similar, superior traits. This concept, if generalized, provides a powerful tool
for searching through candidate solutions for the superior solution to a struc-
tured problem. From Dawkins’ paper on evolutionary design with the Blind
Watchmaker [54], to the first definitive adaptation to art with Karl Sims [3],
and beyond, the evolutionary process has been tested with success in producing
superior solutions to less-traditional technical problems.

Figure 1: Karl Sims - Untitled [3]

Aesthetic evolution challenges candidate solutions of the system - artistic
pieces - to outperform other generated solutions in measures of various aes-
thetic attributes. In an interactive system, the beauty, interestingness, or other
measures of appeal of each piece are evaluated by a user, permitting a subjec-
tive measure to guide the evolutionary process. Various ways to automate this
process - and to permit aesthetic evolution - without strong user guidance have
been attempted with varying degrees of success through learning systems and



more defined, rank-able measures of aesthetic appeal.

Many questions regarding the artistic meaning of artificially evolved images
remain, questioning the extent to which modern definitions of art can apply to
the various processes explored in this paper [10]. Nevertheless, there is little
doubt that one can find many aspects of creativity and gain inspiration for
future works from the results of evolutionary processes, natural or otherwise.
This paper will attempt to briefly outline some of the existing work in the field
that was deemed to be notable by the author.

We first review the concepts of genetic algorithms, genetic programming,
and procedural textures in Section 2 of this report. In Section 3, possible ge-
netic algorithm representations, languages, and operators are considered, with
some distinction between those used for procedural textures, vector graphics, or
alternate approaches. We discuss possible schemes for fitness evaluation in Sec-
tion 4, beginning with interaction-dependant evaluations and fully automated
approaches, to learning system hybrids and other methods. In Section 5, a sub-
set of other noteworthy systems - which could not strictly fit into the report
framework - are reviewed, before offering a conclusion in Section 6.

2 Review

The natural process of evolution has lead to generations of individuals who are
better able to survive and adapt to the situations which they have encountered.
By borrowing this metaphor, and repeatedly selecting fit individuals for can-
didate solutions, genetic algorithms are able to gradually refine the generated
solutions.

Genetic algorithms (GA) provide a way to investigate a search-space with
some unknown structure. When employed correctly, genetic algorithms have
proven to be capable of solving optimization, classification, regression, a-life, and
other search problems. The specific interest researched for this paper pertains
to applications in evolutionary design and art.

2.1 Genetic Algorithms

Applying the process of natural selection as found in nature to a group of pos-
sible solutions in a search space requires a number of considerations. A termi-
nation condition and fitness function must first be determined. As we wish to
give the genetics of more ideal individuals preference for progressing to the next
generation, we must determine a function which can be used to compare two
individuals on a measure of “idealness”. It is also necessary to know when we
should stop searching for solutions. An exactly perfect solution may be achiev-
able, and we should not continue to search for other solutions if we should find
it. However, a perfect solution may not be possible, and better results might be
obtained from performing multiple runs with fewer generations.

It is critical that the representation, and the interpretation of this represen-
tation, be sufficient for the problem we are trying to solve. The representation



Figure 2: Overview - Genetic Algorithms [24]
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must be sufficient to encode a valid solution to the problem, and the repre-
sentation must also permit the solution to be verified without error. This is
particularly applicable to the GP algorithms below.

2.1.1 Fitness

Fitness functions are used to determine the correctness of a solution, and must
be chosen carefully. It may often be required to test a solution across a large
number of data points or scenarios to determine overall suitability of the solu-
tion. While scoring the solution across all data sets may provide more accurate
evaluation, performance is sacrificed. It may be more effective to attempt mul-
tiple, quicker runs with less accurate fitness evaluation. Additionally, some data
points should be held from use in scoring until the end of the run, at which time
a final assessment is performed using these reserved data points. It is possible
that solutions may find local optima for the set of evaluation points. By provid-
ing additional test cases after possible solutions have converged, the flexibility
and adaptability of the solution can be evaluated.

For consideration of multiple distinct fitness measures, a number of multi-



objective fitness functions can be considered, each with their own advantages
and disadvantages. Note-worthy multi-objective techniques include Pareto rank-
ing, fixed weight sum, and rank sum techniques [52].

2.1.2 Fitness-Proportional Selection of Parents

While many strategies exists for selecting parent individuals for a reproduction
operation, there are perhaps two particularly common methods. The general
premise requires selecting the most fit candidate amongst a population or sub-
population, and individuals with better fitness should have a greater likelihood
of passing genetic information to the next generation of candidates [2].

Tournament selection takes a configurable number of random candidates
from among the population and selects the fittest of the lot. If a candidate
dominates all others by a large margin, it will show up in the next generation
just as much as if it had dominated all candidates by a small margin. Roulette
Wheel selection uses each candidate’s fitness to proportionally assign a likelihood
that the candidate will get selected. Using this selection method, fitnesses can
be scaled to adjust the selection pressure among candidates.

2.1.3 Crossover

In the initial, canonical versions of genetic algorithms by Goldberg [2], the
number of crossover points is configured beforehand. Crossovers are typically
limited to 1 or 2 points, though many-point crossovers are possible [1]. The
position of these crossover points (as they align to an index in the representation)
can be fixed, or randomly determined for each pair of parents. Genetic data
is partitioned into regions based on the selected crossover points, and child
solutions are created by copying and recombining alternating partitions of the
parent solutions as seen in Figure 3. Each gene is filled by one of the parent genes
of the same position. Two valid children should be possible by recombination
of the pair of parent nodes.

Figure 3: Genetic Algorithms - N Point Crossover [8]
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2.1.4 Mutation

Mutation can be a useful operation to introduce and maintain genetic diversity.
By selecting regions of a parent solution, and replacing it with modified or
randomly generated information, it is possible to help prevent convergence on
a local optimum. Figure 4 illustrates a high amount of mutation introduced
within a solution. An alternate common method of GA mutation is to select a
pair of equally sized regions within the same parent solution and swap genetic
content.

Figure 4: Genetic Algorithms - Mutation [8]

parent  [1[1[1[1[1[1[a[1[1[1[a1[1[1[1]1]1]1]

child [o]1JoJo] 1]o]1]1]o]o]o]1]o] 1]+ [o]o] ]

2.2 Genetic Programming

Genetic programming (GP) replaces the flat data representation of canonical
GA for a variable-length, tree-based representation [57]. Each node represents
a function, where the children of a node are recursively solved and the values
are provided as its parameters. As the root node of a solution should repre-
sent a valid functional-paradigm program, solutions can be encoded as LISP
S-expressions.

GP builds on canonical GA and in much the same way requires a suitable
termination condition and fitness function. Additionally, there are a number
of new considerations that a programmatic, node-based representation requires.
The GP language - the possible terminal and non-terminal nodes - must be
determined. The language must be sufficient to represent valid solutions to
the problem. Omitting a function from the possible allowed nodes may make
arriving at a correct solution much more difficult, or entirely impossible. A
concern more serious with GP over GA is the assurance that a candidate will
execute without error. A given node recursively evaluates its child nodes to
determine the values of its parameters, but it may not be assured that the
range of the child node is the same as the domain of the expected parameter.
Divisions by zero, and square roots of negative numbers must have defined
behaviour for the problem. This will likely mean creating safe versions of the
offending functions to ensure non-error behaviour across the entire domain.

2.2.1 Crossover

Crossover is a strength of GP, and is comparatively simple in contrast to GA.
When two parent solutions have been chosen, a random non-root node is selected



from each parent. These nodes are swapped across the two solutions, and the
results saved for the next generation. If there are failed constraints for valid
children on the picked nodes, the node selection process can either retry, or
pick the closest valid alternative. Figure 5 shows crossover for GP, though two
children can be created from the process, and discarding one is not generally
necessary.

Figure 5: Genetic Programming - Crossover [27]
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2.2.2 Mutation

Mutation of a tree is accomplished by selecting a random node within the tree
and replacing it with a randomly generated alternate sub-tree, as seen in Figure
6. One technique occasionally employed is to generate a new sub-tree with
depth or weight similar to the sub-tree which was replaced.

Figure 6: Genetic Programming - Mutation [27]
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2.2.3 Automatically Defined Functions

Structure altering operations can be used to employ Automatically Defined
Functions (ADFs) and other automatically-defined features such as lists, iter-
ations, and recursions [56]. Abstractions for more complex functionality can
be created by developing labelled sub-trees as children to an individuals root
node (as in Figure 7), which can then by referenced by the main evaluated tree
branch. Operations can be used in reproduction to create ADFs from a sub-tree
of the main branch of an individual, or to remove the ADF by replacing it with
it’s definition in-line. The ADFs can evolve through mutation and crossover
operations alongside the main branch of the tree.

Figure 7: Genetic Programming - ADFs [27]
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2.2.4 Grammar-Guided GP

When the structure of more ideal solutions is known, or when candidate solu-
tions require specific structure for validity, a grammar can be used to guide the
creation and modification of the representation tree [34]. When selecting sub-
trees of candidates during crossover, care is taken to ensure that nodes are valid
after the operation completes. During crossover, the generated replacement
tree is built using grammar production rules to ensure compatibility. Internally,
grammars can be used to ensure that the output of each evaluated node con-
stitutes valid input for the parent node by employing strong typing. Figure 8
displays a potential grammar for generation of syntactically correct formulae
strings, perhaps to optimize formulae size.

Figure 8: Genetic Programming - Grammars [27]
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2.3 Procedural Textures

A procedural texture uses a formula or algorithm to determine colour value for
a given position. The colour for a position in 2D, 3D, or other spaces can be
independently determined and expressed by a common formula with respect
to the coordinate values for that position. A strength of this approach is the
abstraction of specific details, where instead of specifying every individual aspect
of a rendered scene, image attributes emerge from a more concise formula [55].
The approach is also desired for its offering of parametric control. Formulae
can be created which assign meaningful measures to user-controllable variables,
permitting re-use and quick tuning of the function to a user’s preference.

Sets of simple 2D texture functions can be created by using X and Y coordi-
nate variables, and a minimal set of arithmetic operators. In Figure 11, the top
row of monochrome images, from left to right, is generated from expressions X ,

Y, and (abs X) respectively. Operators can be nested to induce greater im-
age complexity, where periodic functions tend to provide image repetition, and
conditional operations can create contrasting intensity changes. Figure 9 dis-
plays how each channel in RGB space can be separately evolved and combined
to create an interesting image. In rendering and evaluating image solutions,
some care may need to be taken to provide sufficient and unbiased data type
conversion. A common approach is to normalize or clamp position data and the
final result values to a discrete range. A consideration of the behaviour shown
from the included functions may be prudent to lessen the bias of the function
input domain with respect to the render window. Rendering within [0,1] ranges
for X and Y may not display all the same variation that can be seen within a
[-1,1] range (ie. a centred spiral may only display a certain quadrant - appearing
to be set of curves).

Figure 9: IEAS Example - Separate Channels and Complete Image Rendering

Individual
= | Channel[R]
= ) abs
5 . sgrt
.:;J-- abs

Channel[G]
B avg
4 cell

]

Channel[E]
B jy exp
=8 log_10
# E[0.20186022726665693]

12



2.3.1 Noise Generators

Noise generators are an exceedingly important tool for the creation of procedural
textures. Not all desired texture traits originate from ordered, fully determinis-
tic methods; it can be desirable to display attributes with a feel of randomness.
Noise functions introduce a stochastic element to the rendering function by pre-
computing and making available a mapping of (pseudo-)random values across
each pixel.

A truly random noise implementation is often too chatoic; the contrast be-
tween adjacent values is often too great, giving a “grainy” feel to the image. This
random noise suffers from a lack of structure, but by using a smaller sampling
of random points to create a lattice, and using creative ways of interpolating
between these points, a more ordered result can be obtained. This provides a
source of gradient texture data which is highly stochastic, but yet maintains a
flowing, structured appearance - gradient noise.

Figure 10: Fractal Noise Generation [18]

Fractal noise is arguably the most important element of modern procedural
texture generation [55]. Building on a gradient noise, such as from the renowned
Simplex or Perlin noises generators [12], we can combine renderings of the noise
at various resolutions or harmonics. By summing these harmonics with weight
proportional to their harmonic index (see Figure 10), we can generate a fractal
noise that has both a soft flow and high amount of finer detail [18]. These
noise functions can be further tuned and composed together through arithmetic
operations to alter the characteristics of noise, such as those seen in Figure 13.

3 Representation & Languages

Finding a suitable representation for individuals is essential for GA, and the
requirements for evolutionary art must be considered. It can often be seen that
each language and representation returns a distinctly associable set of results,
where the language is often said to be one of the greatest factors in determining
the style of the resultant images.

Using a bitmap as an individual representation is often too fine and granu-
lar. If possible, we may wish to evolve a higher-level context with which we use
to render our canvas. Commonly, canonical GA or GP is used as an intermedi-
ate, genotype representation. These individuals could then be converted into a
phenotype of a bitmap raster image.

13



3.1 Symbolic Expressions

A procedural texture representation is a mathematical, symbolic expression
which returns colour data. Typically, data for a single pixel is returned from
evaluating a GP individual, which is iterated over each coordinate of the raster
image. Such a GP representation may have three trees evolved on each indi-
vidual, corresponding to a tree for each channel in the colour space. Variation
arises from the change of location data which is provided as part of the GP
language.

Figure 11: Karl Sims - Small Programs [3]

The founding work in generalized evolutionary art explored by Karl Sims
in 1991 [3] uses a genetic programming representation to symbolically encode
and evolve a 2D pixel colour evaluating function. The function set for the work
contained standard mathematical operations, vector transforms, noise genera-
tors, and a number of image and colour processing operations. Operators could
return either scalar or vector values. Many of the functions were implemented
with a “warp” variant, which specify offsets to the coordinate values if used
internally within the function (Figure 12). While comparatively minimal in
comparison to some modern works, the language was impressively expressive
with even minimal programs (Figure 11)). Expanding on his results, Sims was
able to experiment with 3D textures through the addition of a Z terminal value
to provide location data for all of (X,Y,Z) space. Similarly, animations were
toyed with by evaluating subsequent frames within a (X,Y,Time) system.

In the 2000 article for Gentropy by Wiens and Ross [9], a similar approach
can be found. While the focus of experimentation lies in the assessment of
automated fitness, the variation in GP language can be noted. In comparison
to Sims’ language, one can find additional variation in the texture functions
provided. Where Sims provided a single noise function with warp and colour
variants, Wiens and Ross offer multiple noise functions each with distinct char-
acteristics (Figure 13).

Warp and tiling functions are still present, permitting the specification of

14



Figure 12: Karl Sims - Warped Noise [3]

o

(sin (+ (- (grad-direction (blur (if (hsv-to-rgb (warped-
color-noise #(0.57 0.73 0.92) (/ 1.85 (warped-color-
noise x y 0.02 3.08)) 0.11 2.4)) #(0.54 0.73 0.59) #(1.06
0.82 0.06)) 3.1) 1.46 5.9) (hsv-to-rgb (warped-color-
noise y (/ 4.5 (warped-color-noise y (/ x y) 2.4 2.4))
0.02 2.4))) x))

Figure 13: Gentropy - Noise Samples [9]
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Figure 14: Gentropy - Textures [9]

IMAGE TEXTURE FORMULA

rgb(¥Y*X, noise(Y, -0.71), min{(¥, 0.25))

rgb (mod (curbflow(Y,X, X}, sin(X))},
lum(marble (0.94, -0.78, (-0.46,0.50,-0.63)}),
turb(chn (COLGRAD), cos(-0.24)))

rgb{ (wchn (¥*X, COLGRAD) +¥*X) /turbflow(noise (noise
(Y, X-Y), cloud(turbflow(X-Y, mod(X,¥Y), Y/(X-Y)),
¥Y/X, diff(sin(X), cos(noise(¥Y,Y))), noise(¥Y,¥))),
lum{(-0.10,0.34,0.98)), ¥/wchn(X,COLGRAD)),
noise(noise(Y,Y¥), cloud(diff(sin(X), cos(noise
(Y, ¥))), dif£(0.94,0.76), mod(X,Y), noise(cos((X-
¥Y)/X), clowd(¥/X, ¥/X, sin(X), noise(¥,¥)}})),
cos (Y*X))

offsets or absolute values for x and y coordinates to child functions. Tiling
operators can be used to create repeating rectangular, circular, or kaleidoscopic
patterns. Wiens also included primitive iterative control functions. The function
forv was used to iterate its subtree across the current colour channel, with the
chn and wchan terminals available to provide the current channel index for
calculation.

Hewgill and Ross [16] expand on the works of Sims in their experimentation

15



with 3D procedural texture synthesis. An existing 3D mesh is also accepted as
a parameter of the problem, which can be used to derive additional parameters
about each sampled point in 3D space. It was suggested, for example, that it
may be desirable to have textures with variance closer to discontinuities or sur-
face creases. To assist with this, terminal parameter nodes were included which
provided measures for surface normals, interpolated (Phong-style) mesh nor-
mals, and surface gradient measures. Figure 15 displays initial results obtained
with basic functions, inclusion of normal parameters, and further inclusion of
gradient parameters.

Figure 15: Procedural 3D Textures - Language Evolution [16]

ArtiE-Fract is a system created by Lutton [22] for artists and designers
based on iterated functions within a GA system. Lutton’s program did not
add iterated function systems (IFS) to the GP language. Rather, the image
generated through GP in the program is used as an IFS attractor image, which
is passed in to a configurable IFS. Three models of IFS (affine, mixed, and
polar) can be combined and employed to display shapes which show more or
less fractal symmetry. An IFS morphing can be seen in Figure 16.

Figure 16: ArtiE-Fract IF'S Morphing [22]

In returning to a more direct GP language, Reynolds provides a more vary-
ingly typed texture synthesis toolbox. The output range of the language func-
tions includes real numbers, 2d position vectors, 3d colour vectors, and other
textures [39]. The functions provided by the systems can be classified between
texture generators, which provide base texture objects, and texture operators,
which can apply additional transforms to the created textures. Accepting no
other texture as input, the texture generators include uniform colourings, gra-
dations, waveform gratings, and noises. Texture operators may include simple
scale, translations, stretch, and rotation operators, and also twists, blurs, edge
detections, colourize, hue/saturation adjustments and slices, and thresholds.
While a complete and up-to-date listing could not be obtained, ongoing lab

16



journals from the author show a large and developed tool-kit of operators at the
disposal of the system.

Evolution of individuals is primarily through traditional crossover, and mi-
nor alterations to ephemeral constants. The created system has also held up
well with filter creation, as in the authors works with alternative camouflage
synthesis [40].

Figure 17: Reynolds - Gray with an Accent Colour - Example [39]

-

Max (Max (UniformColor (Pixel (0.308089, 0.127216, 0.564523)),
VortexSpot (1.23485, 5.30871, Vec2 (1.99217, 0.137068),
Furbulence (0.152681, Vec2 (-1.74168, 0.119476)))),
VortexSpot (1.23485, 5.30871, Vec2 (2.91656, 0.119476),
VortexSpot (1.23485, 5.30871, Vec2 (1.99217, 0.138486),
Max (UniformColor (Pizel (0.308089, 0.127216, 0.564523)),
Furbulence (0.35606, Vec2 (2.91655, 0.119476)}})))

it

3.2 Vector Graphics

Vector graphics differ from procedural textures in that they are composed of
higher level geometric primitives, instead of relying on shapes to emerge from
lower level signals. While a procedural texture may need carefully ordered
conditional nodes to precisely display all edges of a polygon, a vector graphic
may see this appear from a single mutation. Vector graphics primitives can
include polygons, ellipses, curves, images, gradients, and other items. As the
representation for vector graphics permits the ease of displaying primitive pre-
defined shapes, it is easy to consider renderings using vector-based brush strokes.

Heijer and Eiben analyse the feasibility of scalable vector graphics (SVG)
for use as an evolutionary art representation in their 2011 paper [37]. While
successful, a number of notes and concerns had been raised. SVG is a standard
representation for vector graphics, and brings with it a number of advantages
for interoperability between designer and evolutionary art system. However,
the existing SVG standard is XML based, and has strict schema which cannot
be violated - type safety is not as easily assured as with symbolic representa-
tion. The solution that Heijer employed required a customized mutation and
crossover operator for each primitive to ensure that all required - and only valid
- attributes were inherited for the offspring individual. Crossover was for sim-
plicity left as a 1-point crossover, merging styling information from one parent,
with shape information from the other. With the system encoding to XML
(or some intermediate format), the representation can take a variable length,
increasing or decreasing the number of shapes through reproductive operations.

Izadi considers using a vector graphics representation for evolving a filter us-
ing triangular primitives as brush-strokes [38]. Using a grammar-guided GP rep-
resentation (Figure 19), groups of brush-strokes are chained together, with trian-
gular brush-stroke primitives being generated by functions accepting ephemeral
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Figure 18: Heijer & Eiben - SVG Renderings [37]
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values for position and orientation data. Each brush stroke function accepts
values for position, size & orientation, and colour. The final image is compiled
as each node in the tree is evaluated - using a side effect of rendering on the
top of a canvas. To handle the case of a brush stroke hiding a previously ren-
dered stroke, a number of stroke placement strategies are evaluated. The pixel
colour of overlapping strokes can be blended, the new stroke can be applied to
only untouched pixels, or in the case of collision, the most recent stroke can be
ignored.
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Figure 19: Izadi - Vector Graphic Grammar [38]

NODE = PROGRAM3 | PROGRAM4 | TRIANGLESTROKE
PROGRAM3 = Program3 (NODE, NODE, NODE)
PROGRAM4 = Programj (NODE,NODE,NODE,NODE)
TRIANGLESTROKE = Tr<aengle(T,T,T,T,T,T,T,T)
T = floating point number

Bergen and Ross expand on the idea of evolving filters using vector brush
strokes, but returns to a fixed representation in the JNetic system [42]. The
JNetic system aspired to create non-photo-realistic textures from a source image
by repeated application of coloured primitives on a canvas. Options for prim-
itives included circle, rectangle, line, N-polygon, paint-stroke, or grid squares.
While the use of multiple distinct shape primitives is supported, a single shape
primitive is optimal for the fixed-length representation. Crossover can be greatly
simplified, as information at a given index will control similar properties across
all individuals. A defined property of the primitive, such as X and Y coordi-
nates, colour channels, and shape data, can be transferred completely to the
offspring candidate - partial and possibly invalid or non-meaningful data may
not arise in child individuals.

After their previous success in evolving abstract SVG images, Heijer and
Eiben [43] consider strategies for evolving photo-realistic, vectorized images. A
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Figure 20: JNetic - Chromosome Representation [42]
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number of new mutation operations have been introduced which are separated
into macro-level and micro-level mutation groups. Macro-level mutation effects
the entire individual, where micro-level is isolated to a subsection of an indi-
vidual (based on scope tags included in the language). Macro scale mutation
includes sampling other images into the individual, or adjusting the style-sheet
which controls all rendering properties for the individual. Micro scale mutation
includes creating a mirror image of part of the individual, replacing curves with
lines, or adjust scalar values by up to 5 percent. Crossover operations are also
more context-aware. During a crossover, the background is taken from one par-
ent, the style-sheet is taken from the other parent, and one of the shape groups
is taken from a parent individual. Examples of parent property selection can be
seen in Figure 21.

Figure 21: Evolving Pop Art - Property Inheritance [43]
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3.3 Hybrid & Other Systems

Plants have long been used for aesthetic modelling with computational aesthet-
ics, and Lindenmayer’s L-Systems have proven to be a greatly useful and artistic
grammar system. The evolution of L-Systems had previously been proposed by
Koza in the first publication of Genetic Programming. While deterministic
L-Systems present a simple context-free grammar that can be evolved, context-
sensitive IL-Systems can provide additional challenges. Jacob [5] provides an
abstracted method for the coding of L-Systems. Figure 22 shows an example
coding for deterministic L-Systems, but can be easily appended with context-
sensitive rules.

L-Systems were further explored in a 3D context by Hemberg et al. [21],
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Figure 22: L-System Encoding [5]

LsSystem[ RXICM, LRULES], (1)
BXICM[sprout[4]], (1)
LRULES [
LRule[LEFT[], PRED[ sprout[4] ], RIGHT[],
succ|
SEQ[
SEQ[f],SEQ[stalk[2]], STACE[PD[60],leaf[0]], ...,
__SEQ

SEQ[f],sEQ[stalk[1]], bloom[0]]1],
LRule [LEFT[], PRED[ sprout.["til;t.<4"] 1.
RIGHT[], sSUCC[sprout[t+1]]1],

LRule[LEFT[], PRED[ bloom[6] ], RIGHT[], 3SUCC[ bleem[1]1]1],

_ LRule
1. (1)
LRule [LEFT[], PRED,RIGHT[], Succ], (1)
PRED[sprout [aIndex]], (1)
SUCC[_SEQ | _STACK], (1)

SEQ[BlankSequence[_sprout | _stalk | _leaf | _bloom | _f |

YL | YR | PU| _PD | _RL | _RR | _sSEQI], (1)
SEQ[BlankSequence[_sprout | _stalk | _leaf | _bloom | _f |

YL | YR | PU| PD| RL | RR]], (4)
leaf[leafIndex], bloom[blcomIndex] (2). (2)

and Bergen and Ross [44]. Hemberg [21] made use of grammatical evolution
systems to explore aesthetics in various architectural applications. The devel-
oped system, Genr8, uses an expanded version of the Map L-systems algorithm
to convert the basic L-system topologies into faced surfaces. The conversion
process from outline to topology can present multiple possible interpretations,
as seen in Figure 23.

Figure 23: Genr8 - Outline Interpretation [21]
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Bergen employs the coding scheme outlined by Jacob in an evaluation of 3D
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L-System aesthetics [44]. To permit meaningful assessment of 3D geometry, the
L-system is first used to fill a set size of voxel space, permitting quick assessment
of simple measures, where a final rendering can be smoothened.

Machado et al. present an alternative system for evolution of context-free
grammars [33]. Inspired by the concept of shape grammars, each individual
genotype is a representation of a Context-Free Design Grammar. These design
grammars can be constructed from, and used to construct, a graph represen-
tation. Crossover can then be performed through the exchange of sub-graphs,
with care taken to preserve and restore the outgoing and incoming edges.

The Painterly Fool system developed by Colton et al. retains a flexible rep-
resentation within its system [25]. Solutions within the Painterly Fool system
are represented with GP, yet the precise structure of these trees are user-defined
through a representation file, which assigns type data to various terminal and
non-terminal nodes. Further, constraints on the tree structure may be speci-
fied within a user-defined constraints file, where operations that betray these
constraints are reverted and retried. A compiler file may also be specified for
conversion from traditional S-expressions into C-like syntax.

The Painterly Fool system may use these user-specified representations in
various internal problem specifications, including simple symbolic texture syn-
thesis, symbolic filter synthesis, or in a particle-based system. The particle-
based artwork method used in the Painterly Fool uses multiple trees to specify
position and colour of many particles, permitting time as a variable, and plot-
ting over incremented time-steps (as with Sims). Each of these different methods
had examples compiled to a common Processing [14] language representation.

Figure 24 shows evolved images from swarm problems (left), and source
images beside their evolved textures (right).

Figure 24: Painterly Fool - Swarm and Filter Problems [25]
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4 Evaluation & Fitness

We consider the first category of evolutionary schemes to be interactive evolu-
tion, which is dependant on a user to manually asses the fitness of each evolved
candidate solution. The second category of evolutionary schemes is automated
fitness. While a user may be required to initially make some adjustments to
the fitness function, this scheme would have each evolved item automatically
assigned a score, and would permit continued evolution of the solutions without
interruption. There are many ways in which using a combination of the schemes
can keep the user engaged while providing new and interesting results which are
filtered to the users preferences. Learning systems may be used to refine and
delegate classification decisions to an automatic virtual agent.

4.1 Interactive Evolution

From the original work of Sims, to many of the newer and experimental evo-
lutionary system, user interactivity has been a frequent requirement for the
evaluation of aesthetic values. It is difficult to find exact definitions for aes-
thetic criteria, not aided by the possible variance of cultural aesthetic principles.
While some common patterns may occasionally be presented with greater fre-
quency, definitions and criteria for beauty can vary greatly among individuals
even within largely monotonic cultures. By permitting a user to specify the
appeal of each individual - evaluation from artificial aesthetic selection, - results
become tailored to the preferences of the user without requiring any formal
definitions of aesthetic values.

One interesting experiment in interactive evolution by Colton requires lit-
tle explicit interaction from the perspective of the user [26]. While aesthetic
theories can offer some insights into common attributes of “emotional” pieces
of art, precise evaluation is an ongoing challenge. Colton uses source video of
users displaying facial expressions associated with an emotion to drive evolu-
tion of an NPR filter for facial portraits. By evaluating extracted features of
facial expressions known to correlate strongly with certain emotions - with as-
sessment in facial morphology across time, as in Figure 25, - a fair estimation
of the emotional impact of each source video frame can be assessed and used in
scoring. Emotional scores across 6 classified base emotions were used to adjust
GP parameters to drive the styles of filtered portraits, with the styling of each
stroke adjusted to emotion expressed at times in the source video.

4.1.1 Combating User Fatigue

One of the key downfalls of interactive evolutionary systems is the degradation
of interest from the user - user fatigue [19][35][51]. Repeated evaluation of im-
ages by the user can become mentally tiring, and generally necessitates systems
relying on interactive aesthetic evolution to use a reduced amount of individuals
per generation, with fewer generations.
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Figure 25: Colton - Assessment of User for Emotional Cues 25
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Machado et al. attempt to resolve some of the issues of user fatigue through
their system with partially interactive evolutionary artists [19]. One mecha-
nism employed is Automatic Seeding, where highly fit individuals are stored in
common database. Stored individuals can be searched for similarity and later
introduced within a run, or used to create initial populations. Preliminary fil-
tering was performed to ensure that the image complexity of each phenotype
was sufficient to warrant evaluation from the user - simplistic images could be
discarded. The preliminary filtering was later performed on image complex-
ity estimates from the genotype, ensuring that both coordinate terminals were
used, and that a sufficient root node was used (noise functions as root nodes
were found to be too lacking in desired image structure). Machado also offers a
pair of tools, discussed later, for the system to learn aesthetic judgements from
the users and assist in automatic evaluation.

Colton, Cook, and Raad explore possible user interface improvements for
interactive evolutionary art systems, based on their experiences in adapting
their j-ELVIRA particle-based desktop system to tablet devices [35]. Often, it
was found that the computational and rendering speed offered by tablet devices
was significantly below the full desktop systems designed for, and that the multi-
minute delay required to render a small population of individuals could cause
many users to lose interest. To reduce the large delay in generating the initial
population, the first generation is selected from a collection of 1000 pre-rendered
solutions, included with the system to portray a diverse set from which to evolve
(examples in Figure 26). To further reduce the amount of non-interactive delay
time from the system, mutation and crossover operations have been adjusted,
and are performed immediately between images selected by a user. By reducing
processing time of mutated or recombined images to seconds, instead of minutes
for the entire population, users can more easily maintain their focus of evolving
images. The manual selection of parents also showed that many recombined
children did not appear as what the user initially thought would be produced.
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Custom crossover operators were explored, and a suitable operator was found
that tended to produce child images which inherited higher-level attributes more
evenly between parents (splitting background colour, initialisation functions,
and update functions).

Figure 26: Colton - Examples in i-ELVIRA [35]

4.1.2 Collaborative Aesthetic Fitness

An alternative to a single user evaluating every image is to permit many users
to simultaneously assist in evaluating the set of images. The process is known as
collaborative interactive evolution. Benefits can clearly be found in this crowd
sourced method, as individuals can continue to evolve regardless of the continued
presence of any single user. However, multi-user evaluation tends to lack the
fidelity of single-user evaluation, as images must adapt to the varying aesthetic
preferences of many examiners.

Stanley et al. create the collaborative interactive evolution program PicBreeder
based on neuro-evolution of augmenting topologies (NEAT) and compositional
pattern producing network (CPPN) systems [41][49]. By permitting users to
publish creations that are of particular interest, users are able to both evolve
a single image to their own particular liking, and also collaborate by evolving
other published works which catch their eye. As copies of the published items
of interest are retained, multiple users are able evolve distinct images to their
liking from the same base individual without battling one another for stylistic
dominance. By tracking the changes between published images and their source
individual, evolutionary contributions for parents can be tracked, and users can
be credited for their individual alterations (such as seen in Figure 27). Added
social motivators may be used to further retain the interest of users.

Expanding on the PicBreeder system, Zhang et al. have provided an on-
line tool - DrawCompileEvolve - for the evolution of user drawings created with
primitive shapes [51]. An image drawn by the user, comprised of basic vector
shape primitives with colour data, is converted into a CPPN encoding. Using
the methods carried over from the PicBreeder system, a user can evolve images
on his own, or collaboratively, that are more closely related to the users spec-
ified input image. Symmetries, repetitions, colours, and morphologies can be
easily evolved from provided input images and popularized published works of
others. Figure 28 illustrates a possible history of collaborative mutations over
130 generations.
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Figure 27: PicBreeder - Lineage Display [41]
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Figure 28: DrawCompileEvolve - Evolution Over 130 Generations [51]
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4.2 Automated Evolution

While evolving art using interactive user feedback can produce novel and appeal-
ing images, one interpretation of an ideal system would involve the automatic
generation of beautiful, interesting images with little user interaction outside of
an initial configuration. By synthesising artistic forms, and having novel and
aesthetic results that emerge from simple principles, a system may be deemed
to be truly creative.

4.2.1 Fitness for Novelty and Similarity

Novelty is one of the more desirable aspect available from an evolutionary search.
The ability to explore a wide search space of potential images leads to a wide
variety of styles that can be stumbled upon by the user. However, having a filter
too loose can give an unconstrained search, which makes it difficult to improve
upon a small selection of images. Images can be guided in colour, shape, and

25



style by favouring evolved individuals who closely compare to known example
solutions, but a naive approach may not converge with desired traits, or can
lead to early convergence if a trivial solution can be reached. A number of
approaches have been explored between comparing measures to target images,
and measures which compare images relative to other evolved individuals in a
population.

Ibraham is often credited with pioneering a completely automated texture
evolution system through his development of GenShade [6]. GenShade evolves
scenes using Pixar’s Renderman shader system, and can permit fitness evalua-
tion from user input, or through comparison to target textures with lumination,
colour, and wavelet analysis measures. The evolved images are generated to
phenotypes, where features can be extracted in YIQ colour space. Illumination
is compared through distance in the Y channel, and chromacity is compared
through T and Q distances. An overall distance between all three channels is
also available. In the case where automatic texture generation is provided mul-
tiple target images, a comparison of the most common wavelets can be used to
better match common aspects of the image group (Figures 29, 30). The Gen-
Shade automatic evolution mode is a first in texture and filter generation, and
provided an impressive array of comparison and fitness metrics for the time.

Figure 29: GenShade - Wood Grain [6]

Figure 4.4: Wood Grain

Saunders and Gero develop the Digital Clockwork Muse system [11] based
on principles observed by Martindale [58]. The Law of Nowvelty presented by
Martindale had concluded that novelty is a powerful force exerted on the de-
velopment of artistic works. In an attempt to incorporate this law into the
digital evolution of images, the Digital Clockwork Muse system uses an esti-
mate of novelty based on classification error across previously seen individuals.
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Figure 30: GenShade - Sims’ Image [6]

Figure 4.6: Sims's Image
(Target image reproduced with permission from Sims [27] )

A number of digital agents are explored across a number of experiments. Each
of multiple agents within the system consists of a neural network operating as
a self-organizing map. By reducing candidates to points of interest with an
edge detection filter, an agent can attempt to classify a candidate to a map of
previously seen individuals. By comparing the vector of image values to the
neuron weights of the agents self organizing map, an error distance can be com-
puted, and used to determine relative novelty. Mildly interesting candidates
can be retained for continued evolution, where those that present greater nov-
elty are first sent to additional agents for peer review and training. A number of
further experiments were performed within the system, suggesting the relation
between novelty and higher fractal dimension, and that images with too great
a variance from other candidates were not immediately scored highly across
all agents. Based on configuration, it was found that the grouping of scores
amongst agents lead could be lead towards cliques of like-minded agents.

Specific to vector images, there may be additional, more broad measures that
we can use in comparison between candidates, or candidate and source images
[30]. As vector images are fundamentally composed of primitive objects, there
may be simpler functions available that can be used in evaluation or comparison
of these primitives. A simplistic square shape, for example, may be compared
with metrics using their centre point, width, length, mean colour, etc.. These
may be useful for more efficient evaluation for use in hill-climbing, or for frame
interpolation in animations.
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4.2.2 Aesthetic Fitness for EvoART

To guide the evolutionary process of evolving art towards appealing results, sets
of aesthetic criteria and associated methods for obtaining measurements must
be considered. The field of computational aesthetics encompasses measures for
mathematically qualifying the appeal of shape, form, and colour.

Implementing Ralph’s model of aesthetics, Ross et al. experiment with au-
tomated evolution using an absolute metric for fitness, scored independent from
other candidates [23]. Having evaluated a large collection of fine art, it was
observed that higher quality works tended to display a bell-curve distribution
among its constituent colour gradients. The primary metrics explored are pro-
duced from the bell-curve colour-gradient analysis. How well a candidate’s
image gradient fit to a normal distribution is determined by the deviation from
normality measure. The mean and standard deviation of the gradient are also
available, measuring the range and changes seen in the gradients. An addi-
tional feature test included is a comparison of colour histograms between the
evolved individual and a provided image. The colour histogram metric allows
for evolution towards a given colour palette, but not necessarily the shape, of
the supplied image. Images evolved with Ralph’s model of aesthetics employed
tended to produce visually interesting -though not always aesthetically pleasing-
images that were harmonious with colour (Figure 31). In contrast, images pro-
duced without the primary metric tended to be either chaotic or boring.

Figure 31: Ralph’s Model of Aesthetics with Colour Target [23]
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Based on a proposal of computational aesthetics put forth by Machado &
Cardoso [7], Atkins, Browne, and Zhang explore alternative fitness measures for
automated evolution of aesthetically pleasing images in full colour [28]. The
proposal put forth by Machado & Cardoso is an evaluation of fitness based on
a ratio of image complexity to information processing complexity. To expand
on the previous work of Machado et al. which used jpeg compression as esti-
mates for image complexity and fractal compression for processing complexity
estimates, Atkins et al. consider measures of Shannon Entropy and run-length
encodings for image and processing complexities respectively. In addition to
the possible matchings of the above image and processing complexity measures,
a number of RGB colour space normalization functions were also evaluated.
It was found that the original estimate measures of jpeg compression for im-
age complexity and fractal compression for processing complexity produced the
most visually appealing results. Highly rated images using Shannon Entropy,
Shannon Entropy and fractal compression, jpeg compression and run-length en-
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coding, and jpeg compression and fractal compression are displayed from left to
right in Figure 32 below.

Figure 32: Alternate Measures for Information and Processing Complexity [28]

After reviewing commonly employed schemes for automatically evolved im-
age fitness, Heijer & Eiben evaluate and compare the different metrics to de-
termine stylistic features common to each individual scheme [32] [31] [47]. Ben-
ford’s Law suggests that any list of numbers sampled from real-life phenomena
are distributed in a non-uniform way; the leading digits occur with frequency of
about one third (the second digits occur 17%, third digits 13%, etc.). Evaluat-
ing fitness with this scheme entails taking a histogram of pixel intensities across
the evolved image and comparing the fit of distribution to that expected from
Benford’s Law. Images evolved with this metric tended to have a rather grainy

texture, and higher average chroma value than the other tested metrics (figure
33).

Figure 33: Style Characteristics of Benford’s Law Fitness [31]

Global Contrast Factor is a measure of the mean contrast - difference in
brightness - across the image. Each pixel determines contrast by comparing
the difference of its intensity with neighbouring pixels. The average of these
contrast measures is computed for the image at multiple rendered resolutions,
and averaged further with a user-defined weight. Images evolved using Global
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Contrast Factor fitness did display a greater amount of contrasting colours, and
due to the evaluation of contrast at various resolutions, tended to be livelier. It
was also found that there was a higher standard deviation for brightness, and
lower mean chroma measure from among the metrics tested (Figure 34).

Figure 34: Style Characteristics of Global Contrast Fitness [31]

The Ralph’s bell curve measure was tested, and was found to display abstract
and distinct colour progression. Images tended to have high brightness, and
“resembled textures that are used in computer graphics”[47] (Figure 35).

Figure 35: Style Characteristics of Ralph & Ross Fitness [31]

An aesthetic measure based on information theory, was calculated using
Shannon Entropy measures on a pixel brightness histogram. High scoring would
require intensities to follow a uniform distribution. Evolved images guided by
Shannon Entropy were generally colourful, though showed a similar grainy tex-
ture as with Benford’s Law (Figure36).

The Machado & Cardoso Complexity ratio was examined, using a slight
variant with JPEG2000 compression in lieu of fractal compression. Images
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Figure 36: Style Characteristics of Information Theory Fitness [31]

displayed larger white areas and thus had an elevated mean brightness (Figure
37). The structure of the evolved program genotypes was noted simpler than
with other measures.

Figure 37: Style Characteristics of Machado & Cardoso Fitness [31]

A measurement of fractal dimension was estimated using a “box-counting”
technique, and compared to a previously determined ideal value. Previous work
had found peak preference for fractal dimension to be approximately 1.35, where
higher values were seen as complex, and lower values boring. Evolved images
with approximately ideal fractal dimension tended to favour darker and lower
chroma colour values, though strong contrast was found, and with brighter
colour than when evolved with the Global Contrast Factor measure (Figure
38).

The last fitness scheme evaluated pertains to reflectional symmetry. For each
pixel, average colour channel intensity was determined. The image is tested for
horizontal, vertical, and diagonal symmetry by determining if the intensity dif-
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Figure 38: Style Characteristics of Fractal Dimension Fitness [31]

ference between pixels (a given pixel and its reflection) exceeds a threshold (for
the experiments by Heijer & Eibin, a threshold of 5% was used). To prevent
simple, monotonous images, the information theory measure was used as a live-
liness calculation, and used as a weight across each form of symmetry. The
resultant images showed strong combinations of vertical, horizontal, and diago-
nal symmetry, and a variety of texture and colour can be seen (Figure 39).

Figure 39: Style Characteristics of Reflectional Symmetry Fitness [31]
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Machado et al. continue a focused investigation in image feature selection
and novelty within the application of automated aesthetic selection [53]. Adapt-
ing on the work of Gero and Saunders [11], two banks of images are loaded,
internal and external, where internal images are those produced by the system
without any explicit fitness and external images are existing pieces of art which
display desired traits. By evaluating evolved individuals, and comparing the fea-
ture measures as more similar to the external or internal banks, it is expected
that highly (automatically) rated individuals will display fewer of the default
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traits inherent to the systems synthesis engine.

Similar features as found in their previous work on partially automated sys-
tems are evaluated for image classification. Some of the initial metrics calculated
include jpeg complexity, fractal and jpeg complexity per colour channel, average
and deviation per colour channel, and fractal complexity. A number of addi-
tional filters are first applied to both improve efficiency and offer alternative
viewpoints. Each image, prior to feature extraction, is converted to 128x128 24-
bit bitmap. In addition to the features extracted from this standardized image
(the entire image, each quadrant, and middle subsection), the same features are
also extracted after each of Sobel and Canny edge detection, distance transform,
quantization, and salience filters have been applied. The feature extractor ulti-
mately provides 804 possible features to the feature selector and artificial neural
network.

A subset of the possible features are chosen through use of the CfsSubsetFEval
method, which evaluates features for their information redundancy and class
correlation. After the initial population has been generated, a predetermined
amount of the top features are used for training and evaluation with the neural
network.

Figure 40: Machado et al. - Classifier Training [53]
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Figure 41: Machado et al. - Automatic Classification of Evolved Images [53]
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4.2.3 Multi-objective Fitness

In computational models of aesthetics, it is seldom found that the appeal of
images can be suitably determined with a single measure. Rather, the criteria
desired can encompass a vast scope of complimenting and contrasting features.
Ongoing research continues to explore how to adapt multi-objective fitness and
optimization schemes for use in determining aesthetic fitness.
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In his early work with multi-objective EvoART, Greenfield explores the use
of a variant Pareto ranking algorithm with simple measures on image segmenta-
tions [15]. Referring to his previous experimentations with image segmentation,
Greenfield renders 32x32 pixel thumbnails of each evolved individual, and per-
forms an image segmentation for feature processing. The segments are indexed
by area, and have provided metrics which, in addition to segment area, include
boundary length and number of region adjacencies.

In measuring and evaluating an individual on any one of the segment metrics
alone, individuals would tend to produce common, less interesting attributes.
A heavy weight assigned to segment area would direct individuals to display
stripes of equal width, where focussing on boundary length tended to produce
individuals displaying concentric circles.

Using multiple functions composed of the available segment metrics, Green-
field was able to evolve interesting images with distinct segmentation. Repro-
duction was performed with a steady state method. Individuals were chosen
for reproduction via a tournament selection, with use of an intermediate fit-
ness function (comparing largest area to total boundary lengths). Figure 43
displays promising images which had converged with one set of fitness func-
tions after 20 generations. It was noted that the fitness criteria used with the
multi-object method was still delicate, as certain features tended to dominate
the front. While a run may have a diverse Pareto front, undue pressures may
still be found, as in Figure 42 (displayed after 400, and 700 generations).

Figure 42: Greenfield - Multi-Objective Dominance [15]

Figure 43: Greenfield - Multi-Objective Balance [15]

Ross and Zhu have also experimented with Pareto ranking of aesthetic fit-
ness, adapting previous work in texture feature tests to use a pure Pareto rank-
ing scheme in lieu of a weighted sum [17]. In addition to a simplistic Pareto
ranking, A pair of tests were performed where divergence strategies were also em-
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ployed. Building on the Ross and Wiens Gentropy system [13], a number of im-
age feature tests were available for use as individual objectives. A direct texture
image comparison was available, giving a sum of RGB colour space distances
between an individual and target texture. For a more position-independent
colour measure, histograms across colours were also produced, where each im-
age was first quantized to provide histogram bins, and the resultant distances
across the pairs of target and individual histogram bins were measured. In an
attempt to provide an estimated measure of shape, pattern, and edge similarity,
wavelet decompositions were compared across grayscale renditions of the target
image and individual. Smoothness was also evaluated through the distance of
the images after run through an edge-detection filter.

Where a pure Pareto ranking was used as a baseline, it was often seen that
results would prematurely converge, as marginally improved individuals would
quickly dominate the top rank of solutions. The first scoring adjustment tested
was the use of nearest neighbour distance within a given rank. Individuals that
were more diverse (across the image features tested) would have their scores
scaled to the maximum score found in that rank, while less diverse individuals
would be scaled towards the lower scores found in their rank. While tournament
selection was employed (and thus having selection sensitive only to relative score
differences), less diverse individuals would become more likely to be replaced by
future, more diverse candidates, and would also consequently lessen the ability
of a single similar set of candidates from dominating a rank. Further refining
the Pareto scoring method, a second revision was used by normalizing each
of the candidates’ image feature scores to a sub-rank across other individuals
within the Pareto rank group. This helped relieve concerns of one feature metric
providing greater variability than others.

After experimentation, pure Pareto ranking displayed an expectedly large
amount of convergence between solutions, where the revised schemes led to
stronger colour match (see Figure 44). While solutions may not have been
greatly improved, a greater amount of diversity was seen with the second scoring
revision.

One common issue which remains with Pareto-style scoring is the presence
of outliers which display great fitness in only 1 or a few of the objectives, and
poor scores in the others. As multi-objective aesthetic fitness tends to require
many measures to be strongly scored, the outliers from Pareto ranking are often
undesirable. To mitigate this, Ross and Bergen investigate the use of a sum of
ranks approach to scoring within the context of evolutionary art [29]. Using
their JNetic texture system, images were evaluated using the mean, standard
deviation, and deviation from normality from Ralph’s model of aesthetics [23],
as well as a colour histogram distance. Both standard Pareto, and sum of ranks
scoring were used to perform multiple experimental runs. While runs using the
sum of rank scoring did not present results that were as diverse, the overall
quality of images was found to be much higher than Pareto ranking.

Previously, Heijer and Eiben explored automatic evolution of images using
individual metrics for aesthetic fitness and determined styles that were common
to each metric [31]. Expanding on their work, Heijer and Eiben assess the inher-
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Figure 44: Ross & Zhu, Comparison of Pareto Divergence Strategies [17]
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ent styles that images displayed when automatically evolved using combinations
of the previously tested metrics [36]. For each run, two feature scores were cho-
sen from among Benford Law, Global Contrast Factor, and Ross & Ralph Bell
Curve. The Arabitat evolutionary system was utilized to evolve images, and
compare them using combinations of the above image features with a Pareto
ranking system. In comparison to the images evolved automatically with sin-
gle aesthetic metrics (Figures 33, 34, 35), distinct styles can be seen where the
images dominate strongly across both objectives, such as in Figures 45, 46, and
47.

Figure 45: Style Characteristics of Benford Law and Ross & Ralph [36]

Reynolds extends his evolutionary art tool-kit with a prototype for specifying
simple fitness routines from user-provided criteria [39]. In an initial experiment,
images were evolved with a set of multi-objective criteria for evolving a predom-
inantly grey image with a small amount of accent colours. Some manual tuning
was required, though suggestions were made for expanding the criteria to fit a
wider range of possible user requirements.

Five required fitness criteria were identified for the experiment. A fraction
of “good pixels” was required, measuring the number of pixels below the grey
threshold, or above a colour threshold. The distance from the ratio of coloured
pixels to the tuned target value, and a measure for how close the suitable colour
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Figure 46: Style Characteristics of Global Contrast and Ross & Ralph [36]

and grey pixels are to “midrange” values were also used. To ensure contrast,
a number of samples were taken across the evolved image and scored for meet-
ing a contrast threshold. The size of the bounding box containing all suitable
coloured pixels was also made available to promote dispersed and non-uniform
colours. Given the multiple features required for an ideal image, a traditional
multi-objective approach is initially considered. However, the multiple features
were merged into a single metric by normalizing the output of each feature and
multiplying the scores together to create a product of fractions. Two useful
properties were found with this approach: any low score limits the maximum
obtainable score for the individual, and adjustments to any single objective score
adjusts the overall score in the same direction.

Images were often found matching the high-level description of “gray with an
accent colour” within 10 to 30 generations, though often with a feel of sameness
to images evolved from other runs (Figure 48). While adjustments may be
made to preserve novelty of the produced results, the fitness metric for the
user-specified criteria was sufficient to consistently find suitable results, and the
approach may be adapted for the specification of other high-level descriptors.

4.3 Hybrid & Other Systems

A number of attempts have been made, through use of learning system tech-
niques, to create updating fitness functions based on the ongoing feedback of
users. The ideal solution would be able to run without user interaction for a
number of generations, providing distinct and novel results which conform to
the users’ artistic preferences inferred from previous evaluations. The flow of
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Figure 48: Evolving Images from High-Level Descriptions: Gray with an Accent
Colour [39]

UI and improvement in learning system techniques has improved greatly since
the prototypical work of Baluja et al. [4], using manual score assignment and
pixel-mapped neural networks.

Machado et al. begin their investigation into aesthetic learning systems with
their work in partially interactive evolutionary artists [19]. Branching from their
work in automated evolutionary systems, the primary fitness measure used is
ratio of information and processing complexities. The IEC system NEvAr is
adjusted, allowing a user to either rank individuals as before, or to permit auto-
matic ranking of all individuals in a given generation. Optimum expected values
(for subsections of complexity measure) can be explicitly set by the user, or a
single particular image can be specified as ideal (from which the optimal values
can be derived). While the use of partially automatic options was often bene-
ficial after practice, it was noted that initial attempts were disappointing, with
a suspicion that valuing images for novelty ended up providing an unfocused
search with the given fitness measure.

Not set back by the issues found in the partially interactive system, Machado
et al. worked to develop artificial art critics (AACs). These artificial crit-
ics evaluate candidate images across metrics including jpeg complexity, fractal
and jpeg complexity for each colour channel, average and deviation across each
colour channel, and a pair of fractal complexity measures. 33 metrics are eval-
uated across the entire image, and each of the 33 metrics are also evaluated
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in the quadrants and middle subsection of the image. A full 198 measures are
forwarded to an artificial neural network, which has been trained to identify
artwork from one of several possible painters. While certain artists showed a
higher classification success rate, artists were correctly identified by the artificial
critics between 93% and 97% of the time.

Figure 49: Li - Learning Aesthetic Judgement Through User Feedback [45]
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Improving on the concept of using learning systems to classify images from
aesthetic judgements, Li et al. employ a pair of classifiers - permitting users to
defer evaluations to a trained system, and alleviate user fatigue [45]. Various
features were extracted for use in training the system and classifying images.
With a focus on exploring multiple colour spaces, features included mean, stan-
dard deviation, and skewness for each of hue, saturation, and lightness measures,
as well as information entropy for HSL, RGB, and Y9 spaces. Additional fea-
tures included image and processing complexity, Benford’s law correlation in
lightness channels, and ranges of local binary patterns. Measures are extracted
across the entire image, as well as in each quadrant, and a middle subsection
(similar to Machado [19]). The features are reduced from a count of 150 to
a handful of significant features, determined by ranking InfoGainAttribute Eval
evaluations.

Based on the selected subset of extracted features, both a C4.5 decision tree
and multi-layer perceptron neural network can be trained to classify future im-
ages from an initial interactive evaluation of a generation. The decision tree and
neural net are continually updated and trained when user evaluation is provided.
The user can score evolved images with a fixed number of distinct ratings. The
classifier is trained to better associate the user-given rating category with scores
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of the selected image feature measures. Users can choose to have the current
generation automatically evaluated, in which case the learning system is not
changed, or the user can provide explicit evaluations, which the learning system
will use to provide revised judgement, as seen in Figure 49.

Absent of automatic classification and learning systems, a simpler approach
used by Machado et al. is to present a straightforward interface for design
and adjustment of fitness criteria [48]. They had explored artistic rendering
of ant trail paintings, and present a number of potential fitness features based
on generation process statistics to the user. A seemingly intuitive interface has
been provided to procure the relative weights of the features as specified by the
user. To assist in portraying the potential effects of fitness weight adjustment,
the icons displayed next to each weight slider are actively updated to display
the effects on a micro scale. While many systems can provide configuration
options for fitness, a key difference is that these fitness configurations can be
updated after each generation. While no subsystem is included to learn about
the preferences of the user, a mix of both interactive and automated fitness is
achieved. A user can actively pressure future generations to display tailored
aesthetic preferences by updating the fitness weights, yet repeated generations
can be produced without significant analysis from the user.

5 Other Approaches

The ways in which the principles of evolution can be applied to evolutionary art
is vast. Many modern evolutionary design and art systems warrant additional
explanation of their processes. A few notable classifications of such systems are
outlined below, where research on these display promise.

5.1 Particle Swarm

In Sims’ original work [3], the prospect of using time as a variable was proposed
for the creation of video. However, a number of artists have since toyed with
the idea of adjusting primitives with translation and other operations across
time steps, and maintaining the previously drawn segments to create create an
appearance of motion. One particularly noteworthy rendering method is the
display of swarm behaviour and paths over a short amount of time steps.

Colton et al., in their j-ELVIRA interactive evolutionary art system, em-
ployed a GP representation to evolve the routines defining initialization and
updates within a particle swarm [35]. For each individual, a background colour
is defined, and 6 trees are evolved to represent the initial coordinate and colour
channel (RGBA) values of each particle. An additional 6 trees are evolved to
determine the change in these particle values across time-steps, accepting added
variables for the current coordinate and colour values, as well as variables for
particle and time-step indices. For each time-step, lines from the previous par-
ticle positions to the new positions are drawn, and the canvas is blurred.
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Figure 50: Machado - Ant Painting Fitness Weights [48]
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Particle swarms are used to create animations of fireworks bursts by Tru-
jillo et al. through an online collaborative evolutionary system [46]. Linear
GP is used to encode sequences of particle flow and parameter adjustments
for a given individual. Possible genomes consist of either rendering for some
magnitude of time, or toggling behaviour flags, such as attraction/repulsion,
acceleration/deceleration, tracing, and movement in cardinal directions. Figure
51 displays a sampled sequence of frames rendered in this method.

To permit for more complex scenes, a pair of crossover operators are pro-
vided. 2-point crossover operates as expected, and will swap certain sub-lists of
parents, where an append crossover will produce a pair of children by concate-
nating parents in both possible orders. A steady-state population is used, and
individuals are ranked through collaborative user interaction, receiving a fitness
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Figure 51: Fireworks - Animation Frame Samples [46]

that is a ratio of likes to times viewed.

5.2 Ant Trail Painting

Another alternative form of evolved art includes the use of visualizations for ant
colony optimization. Greenfield [20] explores the use of evolving behavioural
processes in ant models, producing artistic works representative of ant scent
trails. All individual ants in the generation were applied on a canvas, where
each individual ant evolved attributes of colours to deposit, colours to follow,
random movement probabilities, amount to veer off course, and probability to
change direction when the followed colour threshold is met.

Experimentation was done across a number of fitness functions, where indi-
viduals were evaluated based on the number of squares visited, the number of
times scent-following behaviour was exhibited, the ratio of the first two mea-
sures, the sum of the first two measures, and the product of the first two mea-
sures. The latter-most fitness was found to be most interesting, where more ideal
solutions would tend to display higher amounts of shading and finer structure
detail, as seen in Figure 52.

Figure 52: Greenfield - Ant Paintings [20]

Machado et al. [48] add to the work of Greenfield, using GA representation
with a larger set of parameters encoded in the genotype. Encodings capture sets
of multiple ants with variables for energy gain and decay scaling, deposit and
search node size and transparency, initial energy and death threshold, pertur-
bation of transparency and angular velocity of offspring, initial coordinates and
orientation, and sensory sensitivity and direction. A simple 2-point crossover
and Gaussian mutation operators were used with tournament selection.
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After each individual has been run for a number of time steps, images fea-
tures of complexity and similarity are evaluated from the resultant canvas. For
use in evolution of an NPR filter, the similarity metric compares the individ-
ual’s canvas to the base image through use of the root mean square error of jpeg
compression. Additional fitness metrics were made available to users of the sys-
tem, permitting them to specify the weight of various metrics including average
number of ants, deposited ink measures, coverage, average distance travelled,
similarity, and complexity, among others. The perceived feel that the filtered
images gives can be greatly influenced by the user-assigned fitness weights, as
seen in Figure 53.

Figure 53: Machado - Ant Painting Feature Preferences [48]

5.3 Compositional Pattern-Producing Networks

PicBreeder provides a milestone of research in collaborative interactive evolu-
tion. The system by Stanley et al. [41] permits users to both evolve images to
their individual tastes, and to collaborate by evolving images previously pub-
lished by other users. Continued evolution of an individual by a single user
allows for increased fidelity in obtaining the treats desired by the single user.
By publishing an image, and evolving other published images, the system per-
mits for interesting exploration of solutions, using interactive aesthetic selection,
while a given user yields their attention from the application. Upon their re-
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turn, users are still able to further refine their individual, as copies of the base
published individuals are retained.

To permit for easier composition of individuals while also keeping track of
an individuals heritage, the use of compositional pattern-producing networks
(CPPN) seemed desirable. CPPNs may be seen as a variation on artificial neural
networks, where a more varied selection of activation functions are available.
While there are a number of ways in which a CPPN may be initialized and
evolved, PicBreeder employs neuroevolution of augmenting topology systems
(NEAT), which adds nodes and links to a base network. Child individuals are
combined through various operators to produce the parent image, as seen in
Figures 54 and 55 [49].

Figure 54: CPPN - Composition [49]
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Figure 55: CPPN - Composition 2 [49]

Gaussian
. d Function
of inputs

-

Zhang et al. expand the capabilities and utility of the PicBreeder system
within their implementation of DrawCompileEvolve [51]. This system uses a
similar method to Stanley’s for representation, and performing and tracking
alterations of individuals. The effort required to produce moderately devel-
oped images, however, is significantly lessened by the ability of a user to draw
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vector art objects which are then simply converted into compositional pattern-
producing network encodings. This provides a much easier path for users to
evolve higher-level and higher-detail images.

6 Conclusion

Work in the area of computational aesthetics and evolutionary art has since
inspired artists, both technical and not, to explore works generated with novel
search techniques and evolutionary computation. Since Sims’ prototypical work,
the amount of interest and number of publications in the topic has shown great
optimism.

While a focus was maintained on the creation of planar imagery, there are
countless mediums where artistic and aesthetic creativity can be expressed.
Within even the realm of 2D textures and filters, a hugely varying amount
of representations, languages, and aesthetic criteria were explored - with many
still left unexplored. Many works of art are being evolved through 3D mod-
els, 2D and 3D animations, and other acoustic mediums with large measures of
success.

There is still great room for improvement, and many open questions remain
in the field of computational aesthetics. However, there have been numerous
models of aesthetics proposed, covering great strides in the development of suit-
able aesthetic fitness measures. Advances have been made in directing searches
towards novelty, combinations of aesthetic estimates, and higher-level visual cri-
teria. Work in multi-objective scoring has also been improved to permit quicker
discovery of ideal images without heavy sacrifices to individual measures.

With many of the proposed measures and representations, there can often
be a flexibility that is offered to solutions not anticipated by the designer. It
is hoped that systems will continue to present appealing and unexpected re-
sults, and that future development will further foster what may be considered
a creative emergence.

Figure 56: Machado - Hand [50]
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