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Abstract

Procedurally generated textures have seen use in many applications, are a high-

interest topic when exploring evolutionary algorithms, and hold a central interest

for digital art. However, there is an existing difficulty in finding suitable heuris-

tics for measuring perceived qualities of an image. Particular difficulty remains for

quantifying aspects of style and shape. In an attempt to bridge the divide between

computer vision and cognitive perception, one set of proposed measures from pre-

vious studies relate to image spatial frequencies. Based on existing research which

uses power spectral density of spatial frequencies as an effective metric for image

classification and retrieval, we believe this measure and others based on Fourier de-

composition may be effective for guiding evolutionary texture synthesis. We briefly

compare some alternative means of using frequency analysis to guide evolution of

shape and composition, and refine fitness measures based on Fourier analysis and

spatial frequency. Our exploration has been conducted with the goals of improving

intuition of these measures, evaluating the utility of these measures for image com-

position, and observing possible adaptations of their use in digital evolutionary art.

Multiple evolutionary guidance schemes with consideration of the spatial frequencies’

power spectra and phase have been evaluated across numerous targets with mixed

results. We will display our exploration of power spectral density measures and their

effectiveness as used for evolutionary algorithm fitness targets, particularly for basic

compositional guidance in evolutionary art. We also observe and analyse a previously

identified phenomenon of spatial properties which could lead to further consideration

of visual comfort and aesthetics.
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Chapter 1

Introduction

Digital art can bring to mind many wide and varying concepts and examples. Many

digitally-produced, original pieces have found their own acclaim, as have novel vari-

ations on existing classics. It is trivial for software to precisely replicate a digital

image. Conversely, we find it difficult to autonomously produce new images with

similar aspects. Forming correct abstractions between the digital data and visual

interpretations is an ongoing challenge covering many fields of study.

Where a function or procedure is able to produce an image in a principled fashion,

we can call these results procedural (procedurally generated) images [1]. The ability

to form minor alterations in these procedures allows us to easily make changes in a

structured manner, though it may not always be clear a priori how these changes

will come to manifest. By combining together parts between the better performing

procedural textures, we may gradually refine them, and allow them to exceed beyond

the performance of any single prior texture. With this process of evolutionary re-

finement, we are able to explore many similar images which can feature novel and

creative variation.

Procedural texture evolution has shown its use in applications ranging from in-

teractive art systems [2], image filter adaptation [3], camouflage generation [4], and

game asset generation [5] amongst others. Evolutionary algorithms (EA), and notably

genetic programming (GP), are able to non-exhaustively explore the space of possible

textures with little explicit understanding of how to effect high-level image changes

[6][7]. Perhaps the most critical component in all EAs is the fitness measure, defin-

ing the meta-heuristic which guides the search to optimal solutions. With texture

synthesis, a bridge is needed to cross the divide from computer vision, information

theory, and computational intelligence attributes we can evaluate from our rendering,

to the psychological and cognitive understandings of perception.

1



CHAPTER 1. INTRODUCTION 2

A number of measures for colour modelling have been explored in existing research,

for both retrieval and synthesis, with various degrees of reported success [8][9][10].

Finding a measure for the comparison of spatial characteristics has remained difficult.

We find that many existing frequency decomposition measures are not well-suited for

the purpose of texture synthesis. It would therein be of great use to find a simple

measure capable of guiding the shape of evolved images.

In investigating the existing measures that can be computed from a rendered tex-

ture, measures related to power spectral density appear to be promising. Estimates

of power spectral density are based on the discrete Fourier transform of a signal —a

measure of power across each component frequency. For 2D applications, a radial

average of the 2D DFT coefficients with common polar distance (same spatial fre-

quency) can be obtained for a more robust, abstract measure. A number of papers in

image analysis/retrieval research [11][12][13] have been found which use this measure

and its aggregates to more effectively classify images based on computationally tricky

but perceptively obvious attributes (i.e. Eastern vs. Western art; Portrait vs. Sketch

vs. Landscape).

Between the successes found in texture synthesis with evolutionary algorithms,

and the classification and perceptual relations with power spectral density and other

Fourier decomposition abstractions, we believe the combination of these ideas may

lead to improved texture generation schemes which can better target the high-level

image characteristics of shape, texture, or style.

1.1 Purpose

With spatial frequency being one of the more human-intuitive measures for shape

and composition, and with the amount of existing research linking the measure to

human perception, we believe it shows great promise as a tool for guiding evolutionary

textures with a more direct interpretation. Our goal is to explore the ability of these

measures as used in evolutionary texture synthesis and evaluate the utility that these

measures may have for the production of digital evolutionary art.

We will be considering our models of shape from a target image for use as a guide

when evolving new images and textures. However, an exact reconstruction of a target

image would not be ideal. Rather, it is hoped that by capturing and reproducing key

spatial attributes of the image, we can see novel images with similar properties emerge

in a creative exploration.

In attempting to fulfil our goals, there are a number of milestones that will guide
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our research. Largely as part of our background materials in Chapter 2.3, we aim

to first refine understanding and intuitions regarding the 2D Fourier decomposition

and its related, abstracted measures. Using our genetic programming engine with a

basic configuration, we will then produce grayscale textures and explore the ability of

various Fourier-based fitness measures to replicate spatial properties of target images.

In this regard, these spatial measures should be considered at both the micro and

macro scales. We will then evaluate the tractability of these measures for guiding both

micro-level image refinements (style), and also lower frequency, macro-level image

refinements (composition and shape). We hope that this will add an additional tool

for these systems which can capture and guide these shape characteristics.

To facilitate a more objective evaluation of these measures, we will host and

analyse an online questionnaire. The results of this questionnaire should show whether

or not these measures can produce visually distinct styles or compositions which

relate to their targets; measures which can therefore capture and guide critical spatial

attributes in their evolved images. The questionnaire may be able to validate a

link between our measures of spatial properties with human perception through the

opinions of the participants. It is our hope that we will find efficient convergence

toward these targets, and a means to generate textures with distinguishable spatial

properties.

Finally, following any success we see while pursuing the above milestones, we

will re-evaluate the utility of these measures for image composition in colour images,

and using a more creatively-tuned evolutionary art system. We will display our

exploration of power spectral density measures and their effectiveness when used for

creating digital evolutionary art.

1.2 Thesis Structure

The layout of this thesis is roughly chronological and follows the flow of our explo-

ration. In Chapter 2, we will present a summary of background material pertaining

to genetic algorithms, procedural textures, and applications of the Fourier transform.

Chapter 3 will then outline key pieces of literature which have guided or offered points

of consideration for our experimentation. Chapter 4 will describe our system and its

base configuration details, which will be followed by the initial fitness experimenta-

tions in Chapter 5. Chapter 7 will break to the user validation survey —confirming

the findings of the previous chapter —before returning to additional exploration and

evaluations of utility for evolutionary artwork in Chapter 8. Potential concepts for
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future studies will be outlined in Chapter 9.2, shortly after we conclude the results

of our findings in Chapter 9.



Chapter 2

Background

2.1 Procedural Textures

As the state of the art around computer graphics has advanced, we have seen greater

and more novel methods of rendering scenes through the use of digital controls. Al-

gorithmic methods to synthesize or alter various parts of a digital scene — including

geometry and models, scene composition, shading, texturing — constitute the core

premise of procedural rendering techniques.

While many aspects of digital rendering may have an algorithmic component

to them, we consider textures and images to be “procedural” when they can be

synthesized without direct reference to some base image [1]. In contrast to approaches

like non-photorealistic filters [14], or other styled filters which apply effects on a source

image, procedural textures should be able to produce a rendering without dependence

on existing digital renderings.

Procedural textures have some potential advantages over using existing images in

certain applications, such as compactness, variability through parametrization, and

the ability to fill arbitrarily sized regions without obvious repetition [1]. While a

potential advantage of having no fixed resolution is maintained, many of the other

advantages will be lost for the exploration in this thesis. Rather, the key advantage

of procedural textures for our usage is their efficiency and tractability to be adjusted

with evolutionary algorithms, as discussed further in Subsection 2.2.1, and Section

3.1.

5
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Figure 2.1: Rendering A Procedural Texture From A Function

2.1.1 Functional, Symbolic Expression

A procedural texture can use a formula or algorithm to determine colour or intensity

values for each position in an image or texture (texel) [1]. While algorithms which

produce textures of fixed size and shape are also common, we will concern ourselves

most with functional textures which are rendered as a computation against the po-

sition corresponding to a texture element (texel) as in Equation 2.1. This function

can be consecutively evaluated for each position in a digital canvas, determining its

intensity or colour values, and thus producing the intended rendering (see Figure 2.1).

I = TextureFormula(U, V ) (2.1)

(R,G,B) = TextureFormula(U, V ) (2.2)

(R,G,B) = (r, g, b) where (2.3)

r = TextureFormulaR(U, V )

g = TextureFormulaG(U, V )

b = TextureFormulaB(U, V )

Simple 2D texture functions can be created using texel coordinate variables {U, V },

and a minimal set of arithmetic operators. These operators can be nested to induce

greater image complexity, where periodic functions tend to provide image repetition,

and discontinuous functions such as conditional operators can create contrasting in-

tensity changes. Limiting the variable ranges, as well as operator and operand type

can also influence the final rendering. For procedural textures, the texture coordinate
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Figure 2.2: Rendering Window Bias — A unit circle rendered about the origin in
windows, from left to right, of [−1, 1], [0, 1], [−1, 15]. Placement and scale show bias
from window.

system, or rendering window, can refer to the range of numbers in each dimension

which map between the integer indices of a pixel and the values provided as texels.

Certain window ranges (e.g. [0,1], [-1,1], [0,128], ...) may favour different end results

in conjunction with the available operators, as shown in Figure 2.2.

2.1.2 Noise Generation

The introduction of seemingly random characteristics within an image is one of the

most important tools in the creation of aesthetic procedural textures. While certain

classes of textures may benefit greatly from the regularity that mathematical expres-

sions can offer, the realm of aesthetic textures often appreciates a hint of randomness.

Natural-looking images, and textures inspired from nature often see a combination

of repeated patterns with some noisy variations [1]. Noise generator functions can

easily introduce stochastic elements to the rendered texture.

A truly random noise implementation (i.e. providing a random value at each eval-

uation of the texture function) is often too chaotic to be used for aesthetic purposes.

The contrast in values at adjacent positions is often too great. A more suitable result

can be obtained by creating a smaller sampling of points to form a lattice, which can

then be interpolated between[1]. This has an advantage of providing a highly stochas-

tic feel, while maintaining a flowing, structured appearance — gradient noise. Such

a noise generator should be seeded, and not truly random, since adjacent rendered

positions are evaluated through separate calls to the procedural texture function. If

the randomness is not reproducible, the procedural texture may evaluate with vastly

different appearances in subsequent renderings.

Fractal noise is argued to be the most important element in modern, aesthetic

texture generation [1]. Expanding upon a gradient noise implementation (such as the

renowned Simplex or Perlin variants [15]), derivative noise generators can be produced
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Figure 2.3: Fractal Noise Generation — FractalSum noise generated with 1 to 4
octaves

Figure 2.4: Noise Generator Examples — From left to right: Simplex, Perlin, Turbu-
lence, Marble

by combining resultant noise at various resolutions. By summing these intermediate

noise results, we can generate a fractal noise that has both a soft flow and high amount

of finer detail [16]. Figure 2.3 shows a smooth FractalSum noise generated at various

maximum resolutions. Noise functions could be further adjusted and composed to

alter the characteristics of the noise, achieving desired natural effects. Some examples

are provided in Figure 2.4.

2.1.3 Colour Schemes

Colour is a key factor for the development of modern textures. Multiple colour

channels can be evaluated separately, each with their own unique expressions (such as

in Figure 2.5, and Equation 2.3). Alternately, an expression could use functions which

support vectors, tuples, or other higher-dimensional types, and could consequently

return a suitable tuple result for each position (i.e. a triplet for data in an RGB

colour scheme, as in Equation 2.2).

In considering possibilities for colour schemes, the de-facto standard is RGB, which

represents the intensities of red, green, and blue light to display for a given pixel.

While the scheme is convenient for modelling the additive colour properties of pro-

jected lights, it can fall short in comparison to other schemes for modelling human



CHAPTER 2. BACKGROUND 9

Figure 2.5: An example of a procedural texture produced through separate colour
channel evaluations. Each colour channel of the texture is rendered through eval-
uation of a separate program tree. The final texture (top-left quadrant) is shown
alongside renderings of each individual channel.

visual sensitivity, or for efficiently encoding the more design-focused properties of a

colour palette. While RGB channels are simple for use at a basic hardware level, it

would be expected that common gradients perceived across an image would induce

non-trivial changes to each channel.

One of many alternative colour schemes for consideration is the HSL scheme [17],

which includes a colour channel for each of the abstracted properties of hue, satu-

ration, and lightness. Depending on the desired effect of the procedural texture, it

may be easier to represent a desired effect by changing one of the more abstracted

HSL channels, instead of requiring a change to each of the RGB channels in lock-step.

Figure 2.6 shows a visual layout of the RGB and HSL colourspaces across their three

dimensions. The translation from any colour scheme to the native RGB represen-

tation may require a minor cost in computation, but could be offset from the more

conceptually friendly (and easier to manipulate) texture function.

2.2 Genetic Algorithms

Genetic algorithms (GA), and more specifically genetic programming (GP), are types

of meta-heuristic, evolutionary algorithms which refine populations of possible can-

didate solutions to produce an improved approximate answer. In nature, we find
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Figure 2.6: HSL and RGB Colour Models Compared[18][19]

the process of natural selection leads to generations of a species which have been

passed more ideal genetic traits, and are better able to survive and adapt to their

environments. By using this as inspiration, and continuously preferring the more fit

individuals as candidate solutions, genetic algorithms are likewise able to gradually

refine their population of final generated solutions over a number of virtual genera-

tions.

As genetic algorithms do not inherently make any assumptions about the data on

which they operate, one key advantage is that we can use GAs to investigate a search-

space of otherwise unknown structure. That is, GAs provide us a method to refine

solutions where it may not be clear how to strictly improve upon an existing solution,

so long as an evaluation criteria is provided. Genetic algorithms have shown their

capability to solve problems of optimization, regression, classification, and artificial

life among other search problems [20].

While an advantage to genetic algorithms is their utility in being purposed toward

a large variety of problems, there are a number of elements requiring consideration

and tuning to achieve useful results. As the algorithm refines the individuals in a

population and improves approximation, it is necessary to determine a termination

condition. It is possible that a single optimal solution can be found, at which point



CHAPTER 2. BACKGROUND 11

we should not persist in searching further. However, it is not always the case that a

perfect solution can be found, or even exist. Alternative termination criteria may be

to stop when a “close enough” solution is found, after a number of generations has

passed, or after some amount of time has elapsed.

Depending on the termination criteria, a maximum number of generations may

need to be specified. A larger number of generations permits for more adjustments

to a candidate solution, and thus a wider traversal of the problem search space, but

we often see diminishing returns. The maximum number of generations would need

to be balanced with the time it takes to execute the run, as better results may be

found from performing multiple shorter executions.

A key configuration affecting performance and execution time of the algorithm

would be the size of the population being refined. Reducing the number of possible

candidate solutions to evaluate and refine each generation may reduce the execu-

tion time, but it likewise reduces the amount of genetic material that can be easily

transferred amongst the remaining solutions. This is a problem of ensuring suffi-

cient genetic diversity, and can be alleviated somewhat by keeping a copy of the best

solutions of the previous generation (elitism), or by employing schemes with sub-

populations, such as segregating and infrequently mixing groups of the individual

solutions.

Other key considerations which we will explore in more depth include the repre-

sentation of candidate solutions, possibility and frequency of solution-adjusting oper-

ations, and the evaluation criteria for how ideal or “fit” a solution is.

2.2.1 Representation

A critical requirement for the success of the genetic algorithms is to ensure that

our representation of a possible solution be suitable for the type of problem we are

solving. The way we encode an individual should be able to represent a valid solution

to the problem, and should permit verification of the solution without error. For

the sake of performance, it is ideal that a representation be able to hold and express

easily mutable elements which alter small, granular aspects of the solution to allow

refinement.

A canonical genetic algorithm representation is encoded in a flat array of some

data type, where each index in the array may represent a small aspect of the solution.

In the case of genetic programming, we consider the underlying representation of each

individual to be one or more trees of functions and operands. Often for intermediate
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Figure 2.7: Genetic Algorithm and Genetic Programming Representation – A flat GA
representation using both binary (top-left) and signed byte (bottom-left) data types,
and a GP tree representation (right).

processing, we can view this representation as an S-expression. Figure 2.7 contrasts

the canonical GA and GP representations.

An additional consideration for using a functional, tree representation pertains to

language choices. The set of possible functions which can be used for a given node

should be capable of expressing and leading candidate solutions to a valid answer

(e.g. it would be difficult to express a periodic function using only basic arithmetic).

Likewise, the set of possible terminal nodes can also bias solutions toward chosen

coefficients, or may prevent a useful function from being formed (e.g. a classification

problem missing a terminal which represents an input variable may not have sufficient

ability to make a determination). Regarding terminals, we may often see input vari-

ables (and values derived from them), user-defined constants, and ephemeral random

constants (ERCs, randomized values which persist for the duration of the run).

A concern in genetic programming with immediate consequences is the assurance

that a solution can be evaluated without critical error. As nodes of a tree are recur-

sively evaluated, we need to ensure that the range of each child node is the domain

expected of that operand. Evaluation of a function node must be protected against

errors including division by zero, and roots of negative numbers, requiring the creation

of safe variants of any offending function.

In the case of textures and images, representation of individuals, and particularly

its bias in artistic criteria must be considered. The use of bitmaps as representations is

often too fine and granular; we often wish to use some abstraction to move ideas onto

our canvas. As procedural textures can be generated through function composition,

a GP representation seems well suited. However, we must be mindful of language

choices, as it is often said to be one of the greatest factors in biasing the style of the

resultant images. The meta-heuristic abilities of GP have proven themselves capable

of overcoming the trickiness in meaningfully adapting these low-level expressions to

have higher-level features and thus make it a reasonable search strategy for textures.
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Figure 2.8: Genetic Programming Reproduction Operators – selected nodes being
swapped in a crossover (left), and newly grown nodes replacing the selected sub-tree
during mutation (right).

2.2.2 Reproduction Operators

The two key types of reproductive operators used to carry genetic material to sub-

sequent generations are crossover and mutation. A canonical GA or GP representa-

tion has very straightforward methods of implementing these reproductive operators,

though a non-standard representation may require custom implementations depen-

dant on their representations and constraints. In all cases, it is ideal to plan the

representation accordingly so that reproductive operators always result in valid solu-

tions. A fragile representation may not be left in a valid state at the conclusion of

a crossover or mutation operation, though it is possible (albeit additional work) to

perform a correction on the individual after the operation completes.

The purpose of the crossover operation is to exchange genetic material, and therein

aspects of a solution, between two parent candidate solutions. A pair of child can-

didates are formed through recombination by first copying each parent, and then

exchanging a subset of their genetic information (values in their representation). In

the ideal case, the aspects of a solution borrowed from the other parent would in-

tegrate well and produce one or more individuals which outperforms the original

parents. This operation is the crux of genetic algorithms, as it is precisely what

permits superior candidates to share beneficial traits, and thus have the population

converge on improved solutions.
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Crossover operations in canonical GAs are performed by first establishing regions

along the flat, fixed-length vector representation, as denoted by a number of points.

These points may be fixed, or chosen randomly for every set of parents [6]. The

contents of alternating regions are then exchanged to produce the child candidates

for the next generation. With a GP tree representation, two non-root nodes are chosen

at random (possibly constrained by data type, depth or size), and swapped. Barring

additional constraints, two child candidates should be produced by recombination for

each execution of a crossover operation.

The other common reproduction operation is mutation, the desired result of which

is to introduce genetic diversity. Without an element of mutation, we would see pop-

ulations quickly converge to show a small subset of the initial genetic information

available [6]. By randomly changing small aspects of a solution, we reintroduce in-

dividuals into the population which are (we hope) at least not substantially worse

than the average, but which employ a potentially unseen trait in their solution. By

slowing the rate of convergence and maintaining genetic diversity, we dissuade the

search from getting too focused on local optima.

Mutation operations in the canonical GA representation is quite simple: a random

region of the vector is overwritten with random data. While marginally more com-

plicated with GP, a random non-root node is selected (again, possibly constrained by

size or depth), and a tree-building method is used to produce a replacement sub-tree

whose size is similar to the one being replaced. With GP, further mutation variants

and configurations are commonly employed, such as adjusting the probability of se-

lecting a terminal or non-terminal node for replacement, or using specific percentage

adjustments to modify the value of ephemeral constants.

A final consideration in the use of various reproductive operations is to deter-

mine the probabilities of executing each possible operation. An excess of crossover

operation calls per generation may result in quicker, premature convergence on a

sub-optimal solution. Conversely, using too high of a mutation probability may not

allow for more ideal solutions to recombine, and may be similar to a random search

or hill-climber approach.

2.2.3 Evaluation

As the core concept of genetic algorithms is to preserve the genetics or aspects of

more ideal solutions in subsequent generations, it is critical that we have a way of

determining which of multiple candidates are most ideal. Darwinian evolution is



CHAPTER 2. BACKGROUND 15

principled in the notion of small, inherited changes improving the survivability of a

species. To replicate the concept of survival, we need to induce competition between

individuals based on a function evaluating their “fitness”. These fitness functions are

used to assign a score of correctness to each candidate solution, and must be crafted

carefully.

The immediate use for the fitness function within the algorithm is for the se-

lection of individuals whose genetic material is to be (partially) used for the next

generation. Multiple strategies exist for choosing which parent individuals are used

in a reproductive operation, but perhaps the most common method is a tournament

selection scheme. In such a scheme, a fixed number of random individuals within

the population are considered, and the one whose fitness function produces the best

evaluation undergoes reproduction to the next generation. The number of individuals

chosen for the tournament can in turn adjust the selection pressure, and so should be

balanced between favouring the best candidates of the generation and maintaining

genetic diversity.

In supervised learning systems, we may wish to evaluate a solution across numer-

ous scenarios, positions, or data points to find an aggregate performance measure of

the candidate solution. Often in these cases, we would like to withhold a portion of

the data points for validation and testing; these points ensure that the solution is not

over-trained, and do not contribute to a solution being carried over (or not) to the

next generation. In unsupervised learning, such as in an art system, we are often less

concerned with over-training and adaptability of our solutions, but instead hope for

an exploratory search where fitness models guide solutions to many possible solutions

in the search space having certain traits.

While supervised and unsupervised learning problems alike can make use of fitness

functions which are able to automatically score candidate solutions, there is a notable

alternative approach often seen when evaluating textures, images, sounds, and other

subjective mediums, namely to have candidates evaluated with one or more human

observations in what is known as aesthetic fitness scoring. While notable efforts

have certainly been made to produce models of aesthetics, it is still very difficult to

find precise definitions and quantitative scores for any sort of aesthetic criteria. By

allowing users to specify their preference for each individual, we can further guide an

exploratory search to match the interests of the user. A critical limit in the utility of

this approach is that numerous subsequent evaluations can leave a user fatigued and

drain their interest [21, 22, 23].
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2.2.4 Multi-Objective Schemes

While some problems permit us to evaluate solutions with a simple measurement

(such as overall error in a regression problem), there are also problems where a score

cannot be easily expressed in a simple scalar value. Often in an exploratory search,

we may want to find solutions which fulfil multiple constraints. When we wish to

explore a problem landscape using more than one criteria, genetic algorithms require

us to employ a multi-objective fitness scheme to express which individuals are more

desirable during a comparison.

Simple schemes for combining multiple objectives into a single measure include

weighted sum, and normalized product approaches. To produce a weighted sum, we

simply consider providing a weight coefficient to each measure which determines how

much that objective contributes to the final score, and summing these weighted values

together. For a normalized product approach, individual measures in a [0, 1] range are

multiplied together to form a compounded product. This would ensure that a poor

score in any individual measure reduces the final resultant score appropriately. One

considerable downfall to both of these simple schemes is that having non-normalized

individual measures makes the schemes either unsuitable or heavily biased. While

a weighted sum approach can operate with non-normalized data, it would then also

require either all measures to be increasing with performance, or all measures to be

decreasing with performance. The precise weighting amongst objectives is also an

extra consideration.

One well-noted scheme which overcomes many of the issues in the previously dis-

cussed näıve approaches is the Pareto ranking [24]. Instead of using a single concrete

evaluation to determine the fitness of the individual for the entire run, we instead

score the individual in relation to the other individuals considered in that generation.

We only consider an individual to be better than another if it is at least as good

for every considered objective, and also better than the other at one or more of the

objectives. This approach uses the concept of Pareto dominance to produce a number

of tiers, or “fronts”, or equally viable solutions. Possible concerns with this approach

are that it is not suitable for large number of objectives (frequently limited to 4),

and that it can lead to solutions which excel in single objectives at the detriment of

others.

A scheme which employs the best aspects of the above approaches is a sum of

ranks (or average rank)[25][26]. After obtaining the raw measures for each fitness

objective, we can produce a comparison of individuals by checking how each measure

ranks amongst other individuals in the generation. By normalizing the rank of each
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measure, we can then revert to a (weighted) sum of these rankings. This eliminates

our requirement of normalized fitness measures, and the requirement of all objectives

being strictly minimizing or maximizing, while also encouraging solutions which per-

form well across all considered objectives. Though this scheme tends to perform well

with uniform weighting, we are also provided the option to customize this weighting

to in turn reflect the importance of specific objectives. This approach has also seen

improved results for texture generation when combining simple design criteria and

aesthetics [27][28].

2.3 Fourier Transform

Fourier analysis is a well-known tool which sees substantial use in signal processing

applications [29]. The operation converts a signal with samples based on amplitude

at points in time, to a representation which shows the power and phase of the sig-

nal’s constituent frequencies. The discrete Fourier transform (DFT) variant, and

specifically the fast Fourier transform (FFT) implementation, provide for an efficient

conversion of short sampled signals to an overview of their frequency composition.

The Fourier transform provides us a way to display the signal as a sum of cosine

and sine terms, where the frequency of each periodic term relates to a component

frequency found in the signal (this is well-illustrated in Figure 2.9). We also have

the overall signal amplitude adjustment provided for the 0th coefficient. The result of

such a decomposition is typically encoded as a complex number for each frequency.

This complex number (Equation 2.12) can be translated in conjunction with Euler’s

formula (Equation 2.7) to provide the individual amplitudes of each sine and cosine

term at that frequency. We will follow [31] for a brief outline of the derivation.

ω =
2π

T
(2.4)

f(t) = a0 + a1 cos(1ωt) + b1 sin(1ωt) (2.5)

+ a2 cos(2ωt) + b2 sin(2ωt)

+ . . .

+ an cos(nωt) + bn sin(nωt)

= a0 +
∞
∑

n=1

(an cos(nωt) + bn sin(nωt)) (2.6)
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Figure 2.9: Fourier Synthesis in 1D: [30]
Each row introduces additional frequencies being added into the cumulative signal.
We can see how any signal can be represented by the sum of component frequen-
cies. From left to right, columns present: a pure frequency tone, cumulative signals
overlaid, cumulative signals summed, Fourier analysis of component frequencies. The
first three columns show signal amplitude u plotted over time t, with a base period
(and signal length) of 2π seconds. The last column shows the mapped amplitude
u over the component cosines of frequencies f . We can observe that the first pure
tone which has exactly one cycle (within in our measured signal length) shows high
amplitude in its Fourier analysis at a frequency of 1. Likewise, the addition of other
pure tones which repeat n times show some amplitude in their Fourier analyses at a
frequency of n.
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We can see specific cosine and sine amplitudes being summed to form a single signal

in Equation 2.5, expressed succinctly in Equation 2.6. The complete signal function

f(t), is produced as a function over time or spatial samples, by summing all its pure

component tones. Each tone of frequency n is scaled by their respective amplitudes

an and bn (for cosine and sine contributions), where the measure of angular velocity

ω (Equation 2.4) ensures the sine and cosine oscillations are measured relative to the

observed signal length, or fundamental period T .

einωt = cos(nωt) + i sin(nωt) (2.7)

f(t) = a0 +
∞
∑

n=1

(

an
2
(einωt + e−inωt) +

bn
2i
(einωt − e−inωt)

)

= a0 +
∞
∑

n=1

(

1

2
(an − ibn)e

inωt +
1

2
(an + ibn)e

−inωt

)

= a0 +
∞
∑

n=1

(Ane
inωt +Bne

−inωt) (2.8)

An =
1

2
(an − ibn)

Bn =
1

2
(an + ibn)

With the use of Euler’s formula (Equation 2.7), we are able to redefine coefficient

terms into the complex plane, removing periodic functions from our definition (Equa-

tion 2.8).

B(n) =
1

T

∫ T

0

f(t)ei(−n)ωtdt

=
1

T

∫ T

0

f(t)e−inωtdt

= An (2.9)

Observing the symmetry in Equation 2.9), we see that f(t) can be described through

a single series of complex terms An. To mark the inclusion of a0, and the broadened

range of the series, we express this new series of complex terms as Cn. We are now able

to adjust the range of our sum, and produce the elegantly succinct formula (Equation

2.10) which defines the Fourier series in complex terms (Equation 2.12).
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f(t) =
∞
∑

n=−∞

Cne
inωt (2.10)

Cn =
1

T

∫ T

0

f(t)e−inωtdt (2.11)

=
1

2
(an − ibn) (2.12)

The real part of the coefficient (an) scales each term and may maintain its defi-

nition as the amplitude of the particular frequency. The additional imaginary com-

ponent of the coefficient (bn) can be used in conjunction with the real component to

recover the phase of the frequency, as declared through the complex phase angle.

Interpreting this in a visual application may be to consider decomposing the signal

into repeating gradients. This closely related interpretation is referred to as discrete

cosine decomposition (DCT), although canonical DCT has purely real values, and so

discards any capture of frequency phase.

Adapting the Fourier transform to a 2D or higher-dimensional space can be found

by applying the DFT on each index of the first dimension, and then again along each

row of the results. This gives us the amplitude and phase of how each frequency

contributes to the total 2D signal. In applications with images, we often see most

of the high-energy coefficients appear around the central positions and main axes of

the shifted FFT[32], as seen in Figure 2.10 and Figure 5.1. Where the amplitude

of an audio signal may have an intuitive correspondence with sound wave pressure,

amplitudes for a 2D image will be a measured in relation to their pixel intensity

(typically 0..255), or as is typically the case in colour images, the intensity across a

particular colour channel.

While the Fourier transform can scale to higher dimensional signals, the use of

DFT for colour textures is still potentially problematic [33]. In consideration of apply-

ing the FFT to colour channels in isolation, we should note that spatial properties are

not necessarily clear from average intensity nor from inspection of individual colour

channels. The related Quaternion Fourier transform [34] might assist in this matter.

One expectation held by the Fourier transform is that the samples it is operating

on are from a periodic signal. If we were to apply the Fourier transform on a set of

samples whose main frequency was not a product of our sample size, often identified

from discontinuities between the first and last sample values, we would be violating

this expectation. What might appear as artifacts (or, spectral leakage) would be
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Figure 2.10: Power Spectra Pipeline
We begin by viewing the source image in subfigure (a), which undergoes 2D Fourier
analysis, and power spectral estimation shown in subfigure (b). As it provides for
more interpretable charting, and easier radial estimation, we “center” the coefficients
by shifting them to diagonally opposite quadrants as seen in subfigure (c). We can
then reduce dimensionality and produce useful aggregates by using radial averaging
measures (d) and subsequent regressions (e).

(a)
Source texture
(Brodatz #4)

(b)
2D PSD,
Normalized

(c)
2D PSD,
Shifted+Normalized

(d)
Radially Averaged
PSD

(e)
Linear Regression

all the unexpected frequencies needed to compensate for the disjoint produced while

repeating the signal. Various functions known as windowing functions, or windows,

can taper or otherwise adjust the shape of the signal ends to known values (often zero).

To assist in reducing some of the smaller discontinuities in the signal, it is often

advised to first filter it through an appropriate window function before continuing

with further spectral analysis.

2.3.1 Power Spectral Density

The power spectral density (PSD) —or, power spectra —is a measure of the power

across the frequency domain of a signal. We can acquire an estimate of the PSD Pj at

frequency j, by multiplying the Fourier terms Cj by their complex conjugate Cj and

scaling by the number of samples n to produce a periodogram [35]. Due to the simple,

real-valued coefficients of our image signal, we can simplify this to normalizing and

squaring the real part of the DFT, as in Equation 2.13 below.

Pj =

(

CjCj

n2

)

(2.13)

=

(

|Cj|

n

)2

(2.14)
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For a 2D signal, we will be interested in the radial average of this measure, re-

quiring us to shift the quadrants of our estimate, and then interpreting the average

in a polar coordinate system. An overview of the steps in our measurement pipeline

is shown in Figure 2.10. Between the DFT and the radial averaging methods, the

power spectral estimate measure has the benefit of being approximately equal across

rotation, and preserving shape across resolution. This measure relates to the contrast

of luminance intensity, and we may also see a relation with image complexity. A fur-

ther abstraction is to take a linear regression of the averaged power spectral density.

While a display of the 2D power coefficients may more accurately represent the true

power spectral density of a 2D signal, we find in some of the literature (i.e. [12][13])

that “power spectral density” and related terms often refer to the radial average or

similar abstractions.

Figure 2.11 assists in interpreting the various representations of an image with a

single component frequency. Shifting from the first to second column of the figure,

we can see that lower frequency (those which have larger periods / cycles over greater

areas of the image) are contained at the center of the shifted FFT power coefficient

display. Our first column shows a wave whose period is half of the canvas (input

signal), and so the charted radially-averaged power spectra shows high power at a

frequency of 2. As we move to the outer edge of the power coefficient display, we

find the powers of increasing frequency ranges being displayed. The fifth column

faintly shows a suitable example of minor aliasing artifacts having both lower power

and higher frequency as we move from the key frequencies toward the image edges.

We can also observe that the orientation of the wave-like pattern in the top image

corresponds to the angle (from center) of the coefficient responsible for the effect,

while still maintaining a distance (from center) corresponding to the actual frequency.

Observing the subsequently charted radially-averaged power spectra plots, we can

see that all have a high power at frequency 4. Finally, we can see the multiplicative

combination of the two component frequencies in the last column, as a grid begins

to form with both horizontal and vertical frequency, again reflected in the power

coefficient display. The final row of the figure displays the radially-averaged power

spectra in a log-log scale, to assist in showing the much larger 0th coefficient, and

the more subtle changes in the lower-powered high frequencies. However, in simple

images, there may not always be power at every frequency. A problematic consequence

of this is that these frequencies cannot be charted in a log-log scale, and may affect

the results of any regression, as is visible in the figure. We strongly recommend those

with continued interest refer to [36].
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Figure 2.11: Power Spectra Interpretation & Reconstruction
Columns from top to bottom: source image, shifted and normalized constituent FFT
power coefficients, radially averaged power spectra, and radially averaged power spec-
tra plotted in a log-log scale (log2) with linear regression
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2.3.2 Compare & Contrast: Wavelets

Another common tool for signal analysis with many similarities to Fourier decompo-

sition is wavelets [29]. While we do not particularly explore further use of wavelets, a

number of pieces of background literature — some of which were highly inspirational

for our work — have considered wavelets as an alternative means of producing spa-

tial analysis. The process of wavelet analysis effectively reduces an input signal into

component waves of various known duration – the eponymous “wavelets”.

Both the discrete Fourier transform (DFT) and discrete wavelet transforms (DWT)

deconstruct a signal into sums of basis functions. In the case of Fourier, we have seen

sine and cosine functions used, though we are likely to see more complex scale-varying

basis functions (i.e. Harr, Meyer, Daubechies) used by wavelets. Efficient implemen-

tations can be found for Fourier and wavelet transforms with algorithmic complexities

of O(n · log(n)) and O(n) respectively. Both analyses aim to provide an overview of

a signal’s component frequencies, but where Fourier analysis provides a more precise

evaluation of the entire signal, wavelet analysis iteratively evaluates scaled subsections

of the signal along set break points. This appears to be quite suited to capturing edge

information and specific features.

Wavelets are often praised for their ability to be localized in both space and time

[37]. While DFT can be robust to the scale of its input image, it is less resilient

to changes which adjust individual pixels/frequencies. Many coefficients would need

to be adjusted to accommodate a minor change to the source image, and vice-versa.

Conversely, wavelet analysis performs decompositions iteratively at decreasing scale

and fixed lengths. Changes to a position in an image would require adjustment to

only spatially local coefficients (albeit at multiple resolutions). While some precision

is lost in the frequency spectrum, the addition of having an approximate time-point

more directly associable to the frequency coefficient is often seen as quite useful.

Wavelet analysis has found large support for applications centred about retrieval

and classification, though we find that Fourier analysis is a more frequented measure in

studies with visual similarity and perception. One possible reasoning for this may be

found behind the works in spatial frequency theory, which suggest that human vision

is decoded in a manner similar to Fourier analysis, measuring contrast frequencies

along our field of view [38][39]. A number of articles have been found which consider

the use of Fourier decomposition in their models of perception and relation to certain

environments [40, 41, 42].

With respect to digital evolutionary art, wavelet analysis appears to be more fre-

quented than Fourier analysis. The Genshade[43] and Gentropy[44] systems make
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use of extracted wavelet coefficients to provide some spatial guidance in an unsuper-

vised fitness approach. This technique was first outlined and borrowed from Jacobs et

al. [45], and we will consider adaptations of this approach using Fourier coefficients.

The curious lack of Fourier analysis in unsupervised evolutionary art and the success

shown by the Jacobs et al. measure in the previous systems are strong motivations

for the strategies we will be exploring.



Chapter 3

Literature Review

3.1 Evolutionary Textures

The use of evolutionary algorithms for texture synthesis had been pioneered by Sims

[7], and has since been the topic of much previous and ongoing studies, adopting both

interactive and unsupervised approaches [46][43][28][47].

In the founding work by Karl Sims[7], a system was presented which, through the

guidance of a user, could gradually manipulate sets of graphical shaders to produce

textures and animations of images fitting a desired aesthetic. While user interaction

was required to provide the necessary aesthetic judgements for evolutionary selection,

this evolution-guided approach to image refinement was a first in providing a compu-

tational exploration of artistic images. The system by Sims would come to constitute

the first of many such evolutionary art systems.

An early attempt in the transition to unsupervised approaches came from Baluja

et al.[46]. Simple topologies of artificial neural networks were used in an attempt

to learn a user’s aesthetic preferences by training against user ratings and groups of

raw pixel values. This approach saw some shortcomings, but highlighted the need

for abstracted image measures to be used as guides. The idea of learning aesthetic

preferences through neural networks has also since been revisited with the inclusion

of multiple abstracted image measures with some reported success [48].

A critical successor to Sims’ work was the Genshade system by Ibrahim[43]. While

the synthesis capabilities of Genshade focused on the refinement of Renderman system

shaders, advances were made to see results while evolving textures in an unsupervised

manner. Various forms of image analysis were compared between the evolved images

and a provided target image. These measures were used in lieu of user input to guide

the evolution of textures toward those showing similar traits of the targeted image.

26
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The Gentropy system by Wiens and Ross[44] expands upon the unsupervised ap-

proach of Genshade by providing additional image analysis measures. With concerns

that the Genshade representation may present further bias to the evolved images,

the system returns to a genetic programming approach using a simple language set.

While we will shortly explore a number of variations seen in modern evolutionary

art systems, we see that similar unsupervised, GP-based approaches have remained

popular.

With the widened abilities of modern texture synthesis approaches, a number of

applications have seen successful adaptations. While it is in the interest of this thesis

to produce textures and filters for their own merit, we have also seen practical systems

being developed in the areas of camouflage [4], and game asset [5] generation.

Alongside and expanding upon the evolution of textures, we have seen interest

in creative and evolutionary systems across the domains of music[49], modelling[50],

and architecture[51], amongst others[52].

3.2 Power Spectral Density

An initial investigation shows that a sizeable amount of research has been done related

to the use of power spectra as a tool for classification and image retrieval. Despite

this, we see little has been done related to the use of power spectra as a target for

texture synthesis, or NPR filter evolution. It is precisely because of this that we will

explore potential strategies to adapt this tool for use in evolutionary art.

3.2.1 Context: Vision

One key argument for the use of power spectral density to guide perceptual properties

comes from spatial frequency theory. The theory purports that a human or animal vi-

sual cortex operates through coding signals in relation to spatial frequencies observed

(in contrast to edge and line detection). Support for this comes from stronger neural

response to sine wave gratings (of arbitrary frequency) than to imagery of images or

bars. Numerous studies have and continue to explore this concept [38, 39, 40, 53, 54].

A notable article with high potential for practical use comes from identifying un-

comfortable images through contrast and frequency analysis. Based on work observ-

ing the sensitivity ranges of luminance contrast, Fernandez and Wilkins had explored

the undesirable effect of certain image contrast frequencies in human perception [41].

Power spectra of an image’s luminance was investigated, and certain frequency octaves
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were found to provide higher ratings of perceptual discomfort (within 2 octaves of 3

cycles/degree). Future studies could find inspiration in adapting this phenomenon to

an explicit aesthetic measure, and analysis on some of our produced images appears

to corroborate these findings.

3.2.2 Context: Classification & Retrieval

It was found by Neumann and Gegenfurtner that power spectra, in addition to other

abstract information measures (including colour distribution and luminance) did per-

mit for a marginal increase in retrieval performance [10]. Work by Graham et al.[12]

also explores and surveys a number of methods making use of power spectra slope for

art classification.

Some works by Balboa[42] and Millane[55] were found which correlate classes of

natural images to the slope of their power spectra. While we expect that the slope

of the power spectra alone is insufficient to generate natural images, there is a strong

suggestion that power spectra may be used to perceptually differentiate attributes of

complex textures.

A number of articles by Graham reinforce the idea that power spectra can be

used to assist in classification of art pieces [56][12]. Graham had concluded that most

pieces of art fall in the same spectral range of natural images. While power spectra

measures alone are not sufficient to limit the potential art pieces to those that are

more aesthetically pleasing, they were able to distinguish with some accuracy between

art piece origin [11], and certain classes of images (i.e. human portraits, landscapes,

sketches) [13]. Readers interested in a larger survey of how using power spectral

density may relate to perception should be directed to references section of [13].

3.3 Spatial Measures

The need for measures permitting comparison of spatial properties tends to get re-

solved through one of two main concepts. We see that frequently taken approaches

either extract key features (and their positions) from a source or target image, or

perform some type of frequency analysis.

Many early attempts to capture spatial aspects for image database systems relied

on basic algebraic and statistical measurements across intensity. The QBIC Project

(which explored image querying through use of colour, texture, and shape measures)

proposed spatial measures derived from capturing intensity areas, circularity, eccen-
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tricity, axis orientation, and algebraic central moment information [57].

In some of the earlier unsupervised evolutionary art systems, particularly Genshade[43]

and Gentropy[44], spatial features were compared via extracted coefficients from

wavelet-based analysis measures. The results from Wiens [44] may be one of the

more positive suggestions for using a power spectra fitness approach.

Shortly prior to the Genshade system by Ibrahim, a notable paper pertaining to

image retrieval was published by Jacobs et al.[45]. In this paper, a quick algorithm was

proposed capable of extracting the key coefficients from a wavelet analysis. Extracted

coefficients are limited to the K greatest absolute values, before being quantized and

compared for mismatch. While the algorithm may have been intended for a retrieval

system, the comparative abilities of the measure may also prove effective in guiding

evolutionary systems.

However, this jump to a wavelet-based analysis, while ultimately showing some

effectiveness, may glance over alternative offerings. One considered problem with

a frequency analysis approach is in the inability to effectively handle images with

multiple colour channels [33]. One potential solution to this was proposed through

the use of the quaternion Fourier transform [34], which does not have an immediately

adaptable equivalence with wavelet analysis.

A criticism common to all types of frequency analysis lies in the fact that a perfect

solution would exactly replicate the target image [58]. In evolutionary art, we are

often not trying to get a precisely identical image to our target. If our system fails

to capture the precise image, this is actually preferred; we only want to capture

key aspects of the image, and explore the landscape of possible solutions which are

in some way similar. While we could adjust our fitness evaluations to prefer some

amount of error, we find that there is often still sufficient challenge presented to our

system outside of toy problems, permitting for novel solutions to emerge while we

pursue higher numerical accuracy.
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System Design

There are two key developed components which form the core of our experimental

system. The first component is a library which can process an image to provide

the PSD, regression, and other FFT related measures. The second, and largest,

component is the evolutionary system which uses genetic programming to evolve and

synthesize procedural textures.

4.1 Power Spectral Density Measures

For all the various experiments conceived for this study, a number of PSD-related

measures would need to be efficiently calculated. Across the levels of abstraction, we

would need to compute and obtain the 2D power coefficient matrices, the radially-

averaged power spectral density, and its linear regressions.

An early decision in the development of the system was to make use of MATLAB[59]

to assist with computation of power spectral density measures. Tooling within MAT-

LAB allows us to generate native C code, which could then be used in the Java-based

evolutionary system (described below, Section 4.2) through use of the Java Native

Interface (or commonly, JNI) framework. This permitted for an expedient start to our

exploration, and then allowed for a focus on the refinement — rather than develop-

ment — of these measures. A trade-off to this integration approach was the limitation

of a single evaluation thread, as the produced native code could not be effectively and

safely run in a multi-threaded manner. The increase of wall-clock time for a single

run was exchanged for multiple concurrent runs, and was not a substantial concern

during our experimentation, though improvements could be made for future work.

To evaluate and produce the 2D power spectra (and phase) coefficients, and then

find the radially-averaged power measure, we use the code outlined in Table 4.1 and

30
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Table 4.1: MATLAB Code for 2D FFT Power and Phase

1 function [power,phase] = FFT2DPowerPhase(img)

2 [N,M] = size(img);

3 imgf = fftshift(fft2(img));

4

5 %power = (imgf.*conj(imgf))/(N*M * N*M);

6 power = (abs(imgf)/(N*M)).^2; % normalize

7 phase = angle(imgf); % find angle in complex plane

8 end

Table 4.2: MATLAB Code for 2D Radial Average

1 function [ravg] = RadialAverage(ftArr)

2 [N,M] = size(ftArr);

3 assert(N == M);

4

5 L = floor(N/2)+1;

6 ravg = zeros(1,L);

7 rpts = zeros(1,L);

8

9 for y = 1:M

10 for x = 1:N

11 % consider polar coordinates, average across same rho

12 [~,r] = cart2pol( x-(N/2)-1, y-(M/2)-1 );

13 r = round(r)+1;

14 if (r > L); continue; end;

15 ravg(r) = ravg(r) + ftArr(x,y);

16 rpts(r) = rpts(r) + 1;

17 end

18 end

19 for l = 1:L

20 if (rpts == 0); continue; end;

21 ravg(l) = ravg(l) ./ rpts(l);

22 end

23 end
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Table 4.2 respectively. A discussion on the computation of 2D Fourier decomposition

and power is covered in Section 2.3. Section 2.3.1 also briefly discusses the radial

average of this measure, though the core concept of its implementation is to bin and

average the power coefficients based on their computed distance from centre (through

the use of a polar coordinate system, see Table 4.2, Line 12).

For the experiments using regression measures of the radially averaged power spec-

tral density, the regression was obtained first by converting the power measures to

a log-log scaling, to better match the conventional practices seen in the background

literature. Charting of PSD throughout this report will use log10 scaling to remain

consistent with other charted scales, though evaluations used for the various applica-

ble experiments have used a loge scaling. For a linear regression, the slope measures

should remain identical across log bases, though the offset will expectedly vary. Re-

gressions were found by using MATLAB’s polyfit function, which itself performs

a least-squares error fit. While uncommon for natural images, some abstract im-

ages produced by our system were found to have no power at certain frequencies.

To lessen the biased effects of these values from the regression, any infinite or invalid

power measures were removed from the set of points considered during the regression.

A decision made in the early stages of research was to forgo any windowing func-

tions prior to sending the image data through the DFT and PSD measure pipelines.

The use of a windowing function has been advised for non-regular signals, such as

typical non-repeating images, to reduce heavy artefacts in the decomposition, with

the specific window functions and parameters dependent on the expected signal. The

absence of any discussion related to windowing in most of background research seems

like a potential oversight, but the first step for our measures was to closely reproduce

the published values. This lack of windowing trades the capture of information at the

image boundaries for a more complex set of coefficients in the decomposition. Insofar

as both target and candidate images use the same windowing (or lack thereof), com-

paring the measures should still hold, though GP may find the match less tractable.

While much of the existing published research has sparse details in the minutiae

of their computation and regression of PSD measures, we have found our library to

produce results closely matching the literature outlined in Section 3.2, and specifically

those from Graham et al. [13].
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4.2 Genetic Programming Engine

The evolutionary art system we will use to generate textures is a custom extension

of the ECJ library for Java [60].

As we have showed our motivation for using evolutionary algorithms (and specifi-

cally GP) in section 2.1.1, our evolutionary system will employ a genetic programming

tree representation to evolve symbolic expressions for procedural textures. Much of

our early experimentation focuses on spatial attributes of an image, and so we find

that in our initial exploration, grayscale textures are not only adequate, but are in-

deed preferable over the artistic colour texture renderings. To suitably represent this,

our GP individuals need only a single tree used to evaluate luminosity or intensity.

Later experimentation will expand to colour textures, and at that time, we will ex-

pand our individuals to hold 3 trees; one tree will be used for each colour channel in

the RGB colour-space.

Initially, a population size of 500 was used as per [61], but diminishing genetic

diversity was found by mid-run. Doubling the population size, in addition to the in-

clusion of diversity-penalties with the sum-of-ranks fitness scheme, was seen to assist

in maintaining genetic diversity. Generation count was determined empirically from

early runs, based on [44], with further adjustment from the considerations noted be-

low. It was seen that 30 runs would provide a sufficient basis for statistical significance

on comparisons across similar fitness measures, while balancing the wall-clock time

required to complete the computations. Later experiments have seen a decrease in

run count due to the higher computational complexity and time required to complete,

such as seen with the introduction of noise operators and increased colour channels.

At this point, often 9 runs were completed to show result diversity with less concern

to statistical evaluations.

The wall-clock run times for the system configured for basic grayscale textures

was found to be approximately 45 minutes per run, when executed using a single

thread of an AMD FX-8350 processor. In this configuration, multiple runs were being

evaluated concurrently, though the parallel nature of the system could see substantial

reductions in single-run execution time if reconfigured to use multiple threads. The

introduction of noise operators and RGB colour channels each increased runtime by

factors of approximately 6 and 3, respectively, with coloured noisy textures requiring

an approximate average of 12 hours for completion of a run.

While our GP genotype representation will remain as tree(s), we must make some

considerations for their evaluations into images. While there has been some ongo-
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ing exploration into typed GP systems, this research will for now constrain itself to

operands and operators dependent on double floating point precision (double) values.

Each tree should evaluate to a single double-type value, which could be clamped to

[0, 1] before being scaled according to colour channel ([0, 255] for grayscale and RGB).

To defer worries regarding cropping or padding, a rendering size of 128 by 128 pix-

els was used before sending the image through other evaluation measures, as square

power-of-two images were efficient for Fourier decomposition. Larger images were

frequently produced for external purposes, so a normalized texture coordinate system

of [-1,1] was used across both rendering dimensions. While other coordinate systems

could be used, it was considered that a 2D space with equal lengths about the ori-

gin coordinate might better display the effects of phase on potentially symmetrical

textures.

Working with GP and tree representations, we consider three main types of repro-

ductive operations. Mutation and crossover operators are staples of GP, and so we

have included them as possible operators with 20% and 70% probability respectively,

keeping them in similar proportion to work by Heijer & Eiben [47], though slightly

higher than others [44]. The introduction of ephemeral value mutation allows for

the randomized constants to be slightly altered by 1%, allowing for finer, hopefully

less destructive, adjustments to the rendered image. The ERC mutation operator has

been included at a probability of 10%, and is responsible for a proportional decrease in

likelihood to execute the crossover operator. So as to remove the possibility of losing

or destroying the best found individual in a generation, we have allowed elitism for

the single best individual of a generation to be retained unaltered in the subsequent

generation. A table of other parameters, including reproductive operator settings, is

provided in Table 4.3.

For consistency, all experimentation was performed using a normalized sum-of-

ranks fitness scheme. Work in [61] has shown summed multi-objective ranks as a

fitness measure can perform well in balancing targeted properties of evolutionary art

without the dominance of individual objectives. When used in a single-objective prob-

lem, such as our early experiments, a sum-of-ranks fitness model will still preserve

ranking information across that one objective, which would not provide biased influ-

ence during tournament selection. A benefit to using sum-of-ranks on these problems

is that we can maintain a consistent diversity penalty scheme across all experiments.

For individuals whose ranks in all objectives are identical, the second individual will

have a penalty of 10 added to each of their ranks. Additional individuals found with

the same scores as the first will incrementally receive an additional penalty of 10 rank
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Table 4.3: Genetic Programming Engine Parameters Overview

Parameter Value
General
Runs 30
Generations 100
Population Size 1000
Elitism 1

Sum-of-Ranks Fitness
Diversity Penalty, Initial 10
Diversity Penalty, Increment 10

Generation 0
Builder Ramped Half & Half
New Node Depth [2, 6]
Grow Probability 50%

Parent Selection
Selection Method Tournament
Tournament Size 3

Node Selection
Terminals 10%
Non-Terminals 10%

Reproductive Operators
Crossover 70%
Mutation 20%
ERC Mutation 10%

Settings: Crossover
Max Depth 17
Attempts 1

Settings: Mutation
Max Depth 17
Attempts 1
Builder Grow
New Node Depth [5, 5]
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points (the fourth common individual would receive a total of +30, and so on). The

hope of such a penalty would be to maintain genetic diversity in the population by

penalizing perfectly identical results. While the high precision of some of the fitness

measures explored might lessen the opportunities for these penalties to be effective,

we expect that the penalties should assist in reducing the effects of GP bloating.

The termination criteria for a run is to complete 100 generations. While “perfect”

individuals have been produced for some simple compositional targets, this is oth-

erwise a difficult problem, where finding such a “perfect” solution is not reasonably

expected. Further, with later multi-objective experiments, an evaluation of raw scores

instead of objective ranks is required to continue with this termination criteria. In

some experiments, more aesthetically pleasing results were found prior to convergence.

This suggests that an extended generation cap or termination by some convergence

criteria would not always be beneficial. While some exploration was performed with

longer generation caps, it was found early on that most objectives suitably converged

by about the 100th generation.

4.2.1 Texture Languages

We begin with a basic, largely mathematical and symbolic texture language. Noise

and more complex functions will be considered later after some experimentation, but it

was not believed in the initial exploration that more “creative” functions be required

to reach a solution. It was of interest to see how well our fitness measures could

guide spatial attributes without the more stochastic (and computationally expensive)

noise functions. We will later reconfirm the importance of language choices when we

see substantial performance increases to certain targets with the addition of polar

coordinate system variables. An overview of the GP language terminals and non-

terminals can be found in Table 4.4, and the various extensions to the language can

be seen in Table 4.5.

As part of the extended language, a number of noise operators are included. There

have been various schemes to handle noise and their respective seeds across different

published GP systems. In our system, noise operators are treated as an extension of

ephemeral random constants; noise seeds are generated at a GP node level, and can be

mutated or adjusted the same as any ephemeral constant (including through the ERC

mutation operator). This approach offers less destructive changes in reproduction over

seeding noise at the individual level, and increased genetic diversity when compared to

employing run-level seeds. The approach we have taken may see benefits from higher
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Table 4.4: Genetic Programming Engine Base Language Overview

Category Arity Display Description
Variables 0 X Horizontal rendering coordinate

Y Vertical rendering coordinate
Ephemerals 0 E[1] Ephemeral in range [0, 1]

E[10] Ephemeral in range [0, 10]
E[100] Ephemeral in range [0, 100]

Math 1 - Negation / sign change
abs Absolute value / magnitude
floor Floor; lesser or equal whole integer
ceil Ceiling; greater or equal whole integer
sin Periodic, trigonometric sine
cos Periodic, trigonometric cosine
tan Periodic, trigonometric tangent
sqrt Square root
exp e (Euler’s number) raised to the operand
pow2 The operand raised to the power 2
pow3 The operand raised to the power 3
log E Natural log
log 10 Log, base 10

2 + Addition
- Subtraction
* Multiplication
/ Safe division; a zero divisor returns zero
max The greater of two operands
min The lesser of two operands
avg The mean of two operands
pow arg[0] raised to arg[1]

3 lerp Linear interpolation between arg[0] and arg[1] based on
normalized (clamped to [0, 1]) arg[2]

Conditionals 4 IfGT If arg[0] > arg[1] then arg[2], else arg[3]



CHAPTER 4. SYSTEM DESIGN 38

Table 4.5: Genetic Programming Engine Extended Language Overview

Category Arity Display Description
Variables 0 Rho Polar coordinate; distance from {0, 0}

Phi Polar coordinate; angle about {0, 0} to X axis
Spatial 1 Circle Gives 1.0 where Rho <= arg[0], otherwise 0.0

3 Shift Evaluates arg[0] as if the rendering position was shifted
by arg[1] horizontally, and arg[2] vertically

Tile Evaluates arg[0] as if the rendering position was scaled
and offset to tile horizontally for arg[1] windows, and
vertically for arg[2] windows

Noise 0 Simplex† Simplex noise generator
Marble† Marble noise (see [1])

1 FractalSum† FractalSum/Smooth noise
Turbulence† Turbulence noise

† All noise functions include a variant symmetric about the X and Y axis. These variants
would have a Sym prefix, and function otherwise identical to the base function.

mutation, but should also be able to preserve their characteristics in a crossover

recombination.

Optimized Perlin and simplex noise generators have been borrowed from [62] and

[63] respectively. While two base noise generators are available, it was considered

unnecessary to include both, so only the simplex noise generator was included due

to its more ideal window range. The fractalsum, turbulence, and marble noises have

been based on the Perlin noise implementation as originally conceived. For these

noise variants, coordinate scaling has been applied to ensure noise is applied across

the [−1, 1] rendering window.
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Initial Exploration

Our exploration begins with the näıve approach of trying to reduce error with the

basic FFT measures. Before moving on to more involved strategies, we evaluate the

effectiveness of the abstract measures, and gradually move to the higher-dimensional

FFT coefficients. Having found these lacking, we adapt an existing approach found

to extract and compare a subset of key coefficients, and adjust how errors related

to phase are incorporated. With some promising fitness measures explored, we will

further refine these measures for use in recreating compositional attributes.

One can follow Table 5.1 for an overview of the discussed notable experiments,

which relates the experiments to their discussion section, and provides a brief descrip-

tion. The basic GP system and parameters being used throughout the experiments

(unless otherwise noted) is presented in Section 4.2.
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Table 5.1: Overview of Experimental Variations

Number Of Objectives
Section Label Description Power Phase Colour Total
5.2.1 E1 PSD regression slope target 1 — — 1
5.2.1 E2 PSD regression slope & offset targets 2 — — 2
5.2.2 E3 PSD radial average curve fitting target, sum of squared error 1 — — 1
5.2.3 E4 PSD coefficient array target, sum of squared error 1 — — 1
5.3.1 J1 Significant coefficient extraction mismatch as per Jacobs et al. [44][45] 1 — — 1
5.3.1 J2 From J1, significant coefficients ranked, sum of rank mismatch 1 — — 1
5.3.2 J3 Coefficients extracted as per J1, up to half mark loss for phase 1 † — 1
5.3.3 K1 Power coefficient error and phase angle error normalized as single objective 1 † — 1
5.3.3 K2 Power coefficient error and phase angle error as multiple objectives 1 1 — 2
5.3.3 K3 As O1, with the “0th coefficient” as its own objective 2 1 — 3
6.3 P1 As J3, with squared phase error as a separate objective. Phase error scaled

to truncated rank, and non-matched positions take full Pi (scaled)
1 1 — 2

8.2.2 C1 P1 across 3 colour channels (RGB) 1 1 x3 ‡ 6
8.2.2 C2 P1 across 4 colour channels (Y,RGB) 1 1 x4 ‡ 8
8.2.2 C3 P1 across 3 colour channels (HSL) 1 1 x3 ‡ 6
8.2.3 C4 P1, and also CHISTQ — histogram difference weighted by colour similarity 1 1 1 3

† No separate objective for phase, but included as penalty to power objective.
‡ Colour objectives are extracted as power and phase measures for each individual channel in the given colour scheme.
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5.1 Genre Images

In creating a pool of possible image targets to choose from, the notion of separation by

genre was borrowed from Graham et al.[13]. In attempting to define visually distinct

genres, the following classifications, while still very broad, were considered:

• portrait photos

• object photos ⋆

• landscape photos

• abstract photos

• portrait paintings ⋆

• object paintings

• landscape paintings

• abstract paintings ⋆

• texture patterns (regular & irregular) ⋆

• geometric patterns

• flag elements

• cartoon elements

• design elements

• compositional elements (simple, abstract) ⋆

Genres sampled for targets used in our experiments have been marked with a ⋆.

With the finite computing resources available, the initial selection of targets was

limited to 4 visually distinct images across the genres. One abstract painting, one

portrait painting, one texture pattern, and one object photo were chosen to balance

the broad visual genres used with a reasonably workable number of images. With

initial experimentation, targets were not chosen with concern to the difficulty a system

would have in replicating similar visual features. Rather, traits desirable in target

selection were the distinctness of an image amongst the other selected targets, the

variety with regard to possible image genre, and different macro- and micro-level

styling. Targets used for exploring compositional properties and integration with

colour measures are explored later in Sections 6.1 and 8.2.1 respectively.

Initial targets are shown in Figure 5.1, and Figure A.1 in the appendix shows the

target images with various Fourier analyses, and coefficient-limited reconstructions.
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Figure 5.1: Initial target set. Featured top to bottom:
- Piet Mondrian – Composition with Yellow, Red, and Blue,
- Van Gogh – Selbstporträt,
- Procsilas Moscas – Cable Ends - San Francisco Bay Bridge [64],
- Vincent Gircys – an untitled photograph of a flower.
Target images are shown alongside their grayscale renditions, their power spectra
coefficients, and radially-averaged power spectra charted with linear regression.
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5.2 Simple Regression & Error

Our first four sets of experiments consider the error between FFT decompositions from

evolved individuals and a target at various levels of abstraction. Beginning with the

most abstract, and most prevalent in our literature review (e.g. [10][11][12][13][42][55]),

we consider a fitness scheme which compares the difference of slope found through

a linear regression. A simple expansion from there is to also incorporate the associ-

ated vertical offset measure produced from the regression. Gradually returning from

abstractions to the raw measure, we consider fitness measures from squared error

between radially averaged spectra, to squared error of FFT coefficient amplitudes.

To evaluate the targets and evolved candidate images, we can obtain measures at

various levels of abstraction from our PSD library. The processing pipeline outlined

by Figure 2.10 guides the measures we will use by virtue of being readily extracted

for comparisons. Most of these initial fitness measures will use a single evolutionary

objective when comparing between the target and each evolved candidate. Experi-

ments in this section will make use of our standard, described evolutionary texture

system with the basic GP language set.

5.2.1 Linear Regression

With the effectiveness shown for assisting with classification and retrieval, a fitness

measure which uses the slope of a linearly regressed, radially-averaged power spectra

was a promising candidate for an initial exploration. Insofar that the previous litera-

ture showed an improved ability to distinguish genre by incorporating this measure,

it was hoped that some spatial property capable of distinguishing these genres might

emerge in our evolutionary synthesis. Being our initial foray into the exploration,

it was not known what amount of fidelity could be expected in our reproduction of

the target, but it was hoped that resultant images would show a clear differentiation

between those evolved with different target measures.

Some substantial concerns arose early into the process of constructing the lin-

ear regression module for our GP system. While much of the earlier explored work

focussed on evaluating natural images or comparatively complex art pieces, little in-

vestigation had been done into simple synthesized textures. In the process of charting

the linearly averaged power spectra, and producing its regression, a transform into

the log-log scale is required. While we may often expect systems capable of handling

more complex individuals to also be able to handle the comparatively trivial, we

run into problems when images with precisely zero power at any frequency produce
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Figure 5.2: Regressed slope example images.
Target slopes were specified at regular integer intervals from −1.0 to −8.0. In evalu-
ations for a target slope of −8.0, no candidate was able to exceeded a slope of −7.6,
and so target slopes exceeding −8.0 were found to be effectively equivalent.

(a) Slope: -1.0 (b) Slope: -5.0

(c) Slope: -2.0 (d) Slope: -6.0

(e) Slope: -3.0 (f) Slope: -7.0

(g) Slope: -4.0 (h) Slope: -8.0

infinite —or otherwise invalid— log-log scaled coefficients. In an attempt to allevi-

ate these issues, frequencies showing precisely zero power have been removed from

charting and regression, however this provides its own set of concerns. Frequencies in

the spectra with zero power may incorrectly display power values averaging between

their preceding and following frequencies when plotted. Removal of low-frequency

coefficients may bias regression to more closely fit the higher-frequency coefficients,

and vice-versa.

An even more fundamental issue with synthesizing images using this measure,

beyond just retrieval, is that the single error value is too abstract. Prior to the

selection of our four main, complex target images, we explored this initial measure

using specified target slopes to evolve the images shown in Figure 5.2. The potential

candidate images which could provide an equivalent score along this measure were too
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Table 5.2: Experiment E1 Summary Table (Slope Error)
Summaries for the remainder of the chapter are produced over 30 runs. For each
target, a row is included for the mean and standard deviation for each fitness objective
aggregate. In the current figure, there is a single objective for slope error (distance
between candidate and target) which is calculated both to find the mean slope error
of a population at termination, and the best found slope error in a population at
termination. The row for “mean” therein shows the mean of terminal population
means, and the mean of terminal population bests across 30 runs.

Slope Error
Target Agg. Mean Best

Mondrian
Mean 0.13 0.00
StdDev 0.04 0.00

Van Gogh
Mean 0.09 0.00
StdDev 0.03 0.00

Cable Ends
Mean 0.05 0.00
StdDev 0.03 0.00

Flower
Mean 0.20 0.00
StdDev 0.06 0.00

numerous. Having a fitness criteria which was too easily satisfied, and with language

biases prevalent in our choice of simple mathematical operators, our GP system had

a fondness of converging to simple texture results (albeit from often messy program

trees).

Regressed Slope

Details pertaining to the calculation of the linear regression can be found in Section

4.1, and an overview of how we pipeline the measures’ abstractions is shown in Section

2.3.1.

Despite extolling the benefits that have been seen in applications making use of

the regressed slope measure, the key information being captured is simply a rough

proportion of power between higher and lower spatial frequencies in an image. This

has clearly been shown to be a notable piece of information for classification, but it

may be too crude for the purposes of synthesis. Where the previous research largely

focuses on classification or retrieval within similar image sets, or using the regressed

slope in addition to other measures, synthesis remains a challenge due to the breadth

of the search space. There is an exorbitant amount of possible images that can

satisfy a narrow fitness measure, many of which will likely be novel, though possibly

undesirable by the user.
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Figure 5.3: Experiment E1 Summary Charts & Examples (Slope Error)
Each row of the figure captures the summary for a target over 30 runs. Leading with the target image, the next two columns
show performance plots of the fitness measure across generations (typically 100). The leftmost plot displays the performance
through the population average, where the rightmost plot shows the performance of the best individual of the generation. Aside
the plots are the best candidate images produced at termination for each run.
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When we nonetheless examine the effectiveness of the fitness scheme on the four

main target images (shown in Figure 5.3), we see results which appear very similar

to the previously fabricated target measures. For the aforementioned reasons, this

was not unexpected. Rather, we see the anticipated quick convergence to a near-

perfect scoring individual within the first few generations. Despite the complex target

provided, our measure is too abstract; GP provides us with a high-scoring individual

with extremely simple and geometric properties. From Table 5.2, we can see that

the best results that were produced for each of the targets had ideal numeric scores,

and were consistently produced to this quality across runs. While certain targets

may slightly favour particular geometric patterns or traits, the resultant images did

not appear to be generally differentiable between targets. In conjunction with the

similarities found between images produced with artificially constructed slope targets,

the slope measure alone is found to be insufficient in capturing any sufficient amount

of spatial details.

Regressed Slope & Offset

The next step on providing further constraint to the evolutionary process would be

to also include the second coefficient in the linear regression, the line vertical offset.

The possible combinations of slope and offset values prohibit us from constructing

and evaluating them at even conservative interval values, and so we see the renewed

need for our previous selection of experimental target images.

We had added the linear regression offset measure as a separate objective, as

normalizing either measure was not practical, and a normalized sum-of-ranks fitness

scheme was used for reasons outlined in Section 4.2. To clarify, we outline each

objective separately in Equations 5.1 and 5.2, where slope and offset are provided

from the least-squares regression.

Errorslope = |slopetarget − slopecandidate| (5.1)

Erroroffset = |offsettarget − offsetcandidate| (5.2)

In performing least-squares linear regression, we have seen the slope roughly de-

scribe a proportion of low and high frequencies in the image. The offset, in images

with equal slope, should then estimate the comparative amount of total power in the

image. However, with a log-log scaling, we see a higher density of data points lay in

the higher-frequency end of our power spectra. We expect that the offset might reflect
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Table 5.3: Experiment E2 Summary Table (Slope + Offset)

Slope Offset
Target Agg. Mean Best Mean Best

Mondrian
Mean 0.02 0.00 0.15 0.00
StdDev 0.03 0.00 0.08 0.00

Van Gogh
Mean 0.11 0.00 0.04 0.00
StdDev 0.04 0.00 0.09 0.00

Cable Ends
Mean 0.08 0.00 0.06 0.00
StdDev 0.04 0.00 0.11 0.00

Flower
Mean 0.20 0.00 0.22 0.00
StdDev 0.06 0.00 0.11 0.00

an amount of power found in the higher spatial frequencies of the image. With the

power spectra estimate treating positive and negative amplitude values equivalently,

there could be widely varying ways for power at high frequencies to adjust, especially

when less consideration is held for the lower frequencies.

With the introduction of the offset measure as a fitness objective, we can now

provide enough guidance to the evolutionary system to produce more distinct sets of

images. When we examine the results of the four target images in Figure 5.4, we can

now begin to see some consistent traits, primarily in regards to average luminance

and contrast. However, the resultant images are still extremely simple, and do not

show strong spatial resemblance to their targets. Some spatial properties are being

captured, but they do not appear to sufficiently align with human perception.

Much like in the previous experiment with only a slope measure, Table 5.3 shows

the clear ease with which the system is able to provide numerically ideal candidates

while using two regression objectives. After sufficient convergence was seen, some

targets would occasionally show spikes in the amount of error for one objective while

optimizing the other. The Van Gogh target showed increased noise in its offset mea-

sure during the later generations, while the flower target showed sacrifices to slope.

This perhaps suggests that neither objective was inherently more difficult, but instead

target dependent.

5.2.2 Radially Averaged Power Spectra

With the measurements in the previous two experiments being too abstract to provide

sufficient detail for synthesis, our next strategy is to step out from the linear regres-

sion, and instead attempt to match the curve of the radially-averaged power spectra.

While the regression could give an approximation of the proportions of high and low
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Figure 5.4: Experiment E2 Summary Charts & Examples (Slope + Offset)
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Table 5.4: Experiment E3 Summary Table (Curve Fitting)

Curve Fit Error
Target Agg. Mean Best

Mondrian
Mean 29247078.74 1490.67
StdDev 16016073.04 516.65

Van Gogh
Mean 24723467.21 174.29
StdDev 15038002.79 242.65

Cable Ends
Mean 24403723.59 11.53
StdDev 14825076.61 11.63

Flower
Mean 26113798.08 401.30
StdDev 23936488.33 479.07

frequency components in the images, a curve fitting approach should be able to much

more precisely match the power at each specific spatial frequency. As the log-log

scaling (used to match the charting from existing literature) is no longer required, we

can also gain the benefit of including and matching zero-powered frequencies. While

a separate objective was used to handle the addition of the regression offset mea-

sure in the previous experiment, accommodating each of the 64 measured component

frequencies would put us into many-objective territory, and our sum-of-ranks fitness

strategy would be inadequate. Instead, we will consider a single objective from the

sum of square error at each frequency. One key concern with this approach would

be that most of the power in images is set about the lower frequencies (as also seen

in )[32]), and there is thus a high potential for bias to match the lower frequency

components.

Section 4.1 provides example code for producing the radially averaged power for

each frequency, from which the sum of square error can be produced using Equation

5.3. For an n× n power coefficient matrix, we can produce the radial average of the

power coefficients grouped by frequency for both the target (T ) and candidate image

(C), and index each frequency from 0 to n/2.

Error =

n/2
∑

f=0

(Tf − Cf )
2 (5.3)

Visually, it may not be clear if there was any improvement in comparison to the

previous experiment. Figure 5.5 shows similarities between images across the various

targets. While not as easily differentiable, there are some minor improvements to

visual similarity with the images’ respective targets. The flower target appears to

have stronger, more consistent contrasts emerging from most of its evolved images.
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Figure 5.5: Experiment E3 Summary Charts & Examples (Curve Fitting)
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Beyond that, the Mondrian target has a few images with themes of spaced lines, the

Van Gogh has a few images with some vague aspect of a profile, and a pair of images

evolved from the Cable Ends target has a fine granular noise-like texture. However,

these appear to be exceptions, not the typical result.

It would seem that we are capturing more useful information, but it is not clear

if what we capture is sufficient, or if our measure is too difficult for the evolutionary

system to use as guidance. From Table 5.4, we see that the average population error

is orders of magnitude larger than the error of the best individual, but this may

not be unexpected due to reproduction operators having the potential to cause huge

changes to the lower —more powerful — frequencies. Rather, the charting in Figure

5.5 displays a suitable convergence.

Returning to Table 5.4, we can see that the error levels of the best evolved images

are orders of magnitudes less than the final population mean. Comparing the differ-

ence in error between the best found individuals for each target, it would seem that

certain targets are inherently easier for our system to satisfy. Worrying, however,

is the low error found with the Cable Ends target. While two images produced for

that target had some remote similarity, most appeared quite visually dissimilar. This

strongly suggests that some visual component is not being captured by our measure.

It is quite possible that the radial averaging is providing leniency; harmonic frequen-

cies could be missed if recreated at different radial angles (and thus in the same bin

for radial averaging). We will also later adjust our fitness metrics and incorporate a

measure for component frequency phase, but not before refining the capabilities from

a purely power-based approach.

5.2.3 Power Coefficients

The next step in our set of experiments is to match power coefficients. While a

perfect match of coefficients would diminish the purpose of producing new, novel

images, the absence of capturing any phase information still leaves us with a plentiful

amount of possible evolutions. Concerns that the previous curve fitting approach

could be obscuring certain frequency interactions further warrants a less abstracted

fitness measure. We will simply employ a single objective, measuring the sum of

squared error across each of the 1282 power coefficients. (To improve computational

efficiency, half of the coefficients may be ignored due to the symmetrical nature of

FFT on non-imaginary input, and the resultant power spectra.) This measure is

described in Equation 5.4, assuming an n× n power coefficient set, with T belonging
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Table 5.5: Experiment E4 Summary Table (Coefficient Error)

Coefficient Error
Target Agg. Mean Best

Mondrian
Mean 40801723.31 687983.82
StdDev 19789631.85 84851.29

Van Gogh
Mean 29554765.71 5167.94
StdDev 18628699.02 2016.67

Cable Ends
Mean 25481751.48 1855.43
StdDev 15398753.35 85.77

Flower
Mean 24287423.34 28761.09
StdDev 13255031.22 16807.58

to the target and C the compared candidate. Much like the curve fitting measure,

we expect to see a bias toward lower frequency coefficients.

Error =
n

∑

y=1

n
∑

x=1

(Tx,y − Cx,y)
2 (5.4)

Visually, from Figure 5.6, we see mixed results across the targets. The Mondrian

targets appears to show improved consistency with recreating lines, and the flower

target continues to show strong light and dark contrasts. The other two targets

appear to have worsened visual performance, despite showing the strongest results

numerically, as in Table 5.5. Despite our preconceived expectation that the Mondrian

target should be the easiest among initial targets to recreate with our system, and

despite it being a target with many visually similar evolved candidates, it is the worst

scoring of the targets for this experiment. Additionally, the visual disparity between

the Cable Ends target and its evolved candidates despite its numeric performance is

curious.

When we examine some of the evolved candidates and compare them to the targets

(Figure 5.7), our observations are completely opposite to the numeric scores above.

Despite the low amount of error produced with the Cable Ends target, the power co-

efficient display is substantially different between the target and its visually dissimilar

evolved candidates. Further, some of the more visually faithful candidates from the

Mondrian target have similar power coefficient displays despite their numeric error

scores. This is actually a welcome sanity check. These observations would suggest

that the first few coefficients provide far too heavy a bias to produce meaningful

results, and that some other approach will be needed to overcome this bias.
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Figure 5.6: Experiment E4 Summary Charts & Examples (Coefficient Error)
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Figure 5.7: Experiment E4 Target & Candidate Comparison
Evolved images are compared alongside their target image. The second row of each set shows the complete set of power
coefficients, where the third row filters displayed coefficients to the top 50. Overlap between the filtered top 50 is show in the
style of a confusion matrix; common positions are white, positions missed from the target are red, and positions in the candidate
but not target are green. This shows the relative ranked status of the top 50 coefficients.
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5.3 Filtering Relevant Coefficients

From our attempts at guiding texture evolution through power coefficient error, we

have gained some insights on how few coefficients can heavily influence the fitness

measure. It follows that we will need to explore various ways of more fairly scoring

similarity between power coefficient sets. We will craft and evaluate new fitness

measures which play with ideas of extracting smaller sets of coefficients, use rank

distance in lieu of error distance, separate more powerful coefficients to their own

objectives, and begin to incorporate aspects of phase. An overview of the experiments

considered in this section can be found in Table 5.6 below.

Table 5.6: Overview of Section 5.3 Experimental Variations

Label Measure K Language Tables Figures Notes

J1 J1 50 Base 5.7a 5.9 Top K truncated, quantized er-
ror (position mismatch)

J1 150 Base 5.7b 5.9

J2 J2 50 Base 5.8a 5.10 Rank distance error

J2 All Base 5.8b 5.10

J3 J3 50 Base 5.9a 5.13 J1 with integrated phase error
(linear)

J3 50 Base 5.9b 5.13 J1 with integrated phase error
(squared)

K1 K1 50 Base 5.10 5.14 Top K, non-quantized power
and phase error

K2 K2 50 Base 5.11 5.15 K1, with separate objectives
for power and phase

K3 K3 50 Base 5.12a 5.16 K2, with the 0th coefficient sep-
arated to a third objective

K3 150 Base 5.12b 5.16

5.3.1 Coefficient Extraction from Jacobs et al.

An initial survey into extracting key coefficients from a 2D DFT decomposition did not

yield many useful results. Most of the found articles pertain to compression of sparse

transforms, and while doubtless useful for other applications, did not provide much in

means of determining spatial saliency. The common feature between papers [32][36],

and our existing understanding with image composition, was in the prioritization of
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higher power coefficients. However, this does not assist us with our previously found

issue of coefficient bias.

A strategy for frequency analysis coefficient isolation was found among works in

image retrieval using wavelets. The paper on Fast Multiresolution Image Querying

by Jacobs et al. [45] outlines a technique for efficient retrieval of images by compar-

ing how well a set of extracted wavelet coefficients and their positions match. The

technique had been adapted for use with texture synthesis previously [43][44] with

some level of reported success. In the initial paper by Jacobs et al., the calculation of

the querying metric from the transformed coefficients is rather straightforward and

efficient. First, the set of coefficients is “truncated” by zeroing all but the top K

greatest absolute value coefficients. Following this is a “quantization”, setting all

non-zero components into their sign of {−1,+1}. The total error between images is

then the sum of differences between each truncated, quantized coefficient position.

The paper also plays with the idea of binning coefficients by position and using a

weighted sum instead for its final calculation.

A promising observation from the paper regards the beneficial effect of the quan-

tization scheme. It was seen that this quantization improved the ability of metric,

and despite loosing much of the precise data from the coefficients, “the mere presence

or absence of such features appears to have more discriminatory power for image

querying than the features’ precise magnitudes”[45]. This is wonderfully in line with

our own previous observations regarding a small number of high powered coefficients

overwhelming the ability of our metric to fairly guide evolution.

A few further considerations will need to be made before attempting a similar

scheme using Fourier transforms instead of wavelets. A quantization to {−1, 0,+1}

is not as meaningful in the context of a Fourier transform, where power coefficients

are strictly positive. Amplitude coefficients may hold negative values, but also show

negative symmetries, and can change sign when set with opposite phase. We can

truncate coefficients as per the paper, but the solution we have attempted will instead

quantize all remaining values simply to 1 (an example of this can be seen in Figure

5.8). This effectively turns the score into a count of how many positions share a top

K coefficient. As any position giving an error when observing the top K locations

from the target necessarily means there is an additional error found when observing

the top locations in the candidate, we can avoid double counting by only observing

the errors in the targets’ top positions.

While a wavelet decomposition requires further choices for wavelet type, decom-

position type, and basis normalization schemes, Fourier compositions are constrained
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Figure 5.8: Truncation and Quantization Example
A simplified example with superscript noting the relative rank of the coefficient po-
sition. Positions with error have been displayed in red.
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but simplified. We do, however, still need to choose a K value to determine the size

of our coefficient truncation. Jacobs et al. had found values of 40 to 60 to perform

well with their image retrieval data sets, with a slightly increased K value showing

leniency (improved matches) when retrieving rougher, hand-drawn recreations of the

queried image. In our selection of a suitable K value, we considered possible recon-

structions of the target images which had power removed from all but the top K

positions. A wide range of values for our selection of K were found to produce sim-

ilar recreations of the target when maintaining similar phase values, but prominent

recreations seemed to begin to form in the range of K = [50, 150]. Target image

reconstructions at various K choices can be seen within Figure A.1 in Appendix A.

Initial Adaptation

With a proposed countermeasure to the few domineering coefficients, our next exper-

iment will be attempted using our adaptation of the Jacobs et al. metric. Continuing

without changes from our base system, and maintaining the same basic GP language,

we will explore evolutions with the selections of both K = 50 and K = 150.

Initial review of the evolved solutions in Figure 5.9 looks rather rough for both

choices of K. With K = 50, the Flower target has some minor aspects appear

in its solutions, and the Cable Ends target has a somewhat consistent display of

partial stripes —seemingly proportioned to the width of a cable strand end in the

target. When we follow up by referencing Table 5.7, we see that best results for the

flower target at K = 50 had an average of 7.3/50 ≈ 15% mismatched coefficients

in its top ranks. These images produced are a fair bit rougher, though not entirely
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Table 5.7: Experiment J1 Summary Table

(a) K = 50

Coef. Mismatch
Target Agg. Mean Best

Mondrian
Mean 32.46 15.17
StdDev 1.03 1.76

Van Gogh
Mean 30.41 11.80
StdDev 0.83 1.16

Cable Ends
Mean 40.79 30.27
StdDev 1.06 2.66

Flower
Mean 27.81 7.30
StdDev 0.89 1.15

(b) K = 150

Coef. Mismatch
Target Agg. Mean Best

Mondrian
Mean 53.28 18.37
StdDev 2.16 1.87

Van Gogh
Mean 69.52 34.33
StdDev 3.02 2.12

Cable Ends
Mean 116.26 88.97
StdDev 2.41 3.50

Flower
Mean 63.90 27.37
StdDev 2.62 1.97
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Figure 5.9: Experiment J1 Summary Charts & Examples; K = 50
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Figure 5.9: Experiment J1 Summary Charts & Examples; K = 150
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unimaginable from the types of images we have seen at similar K values during image

reconstruction (Appendix A, Figure A.1). While still very far from the target image,

the candidates produced from the Cable Ends image do have some minutely familiar

spatial properties, and accomplish this despite having over 60% mismatch on average.

The remaining targets have seen some increased contrast in comparison to previous

experiments, but altogether have not shown substantial visual improvements.

When we consider the change to K = 150, the amount of error has strictly in-

creased, though not uniformly nor linearly. Despite tripling the count of coefficients

remaining after truncation, some error scores have approximately tripled, but others

have increased further, and some —notably the Mondrian target — have barely risen

at all. Further, despite the Mondrian target showing a capability of matching higher

coefficients, we have seen a substantial visual drop at K = 150. The increased K

value appears to give a consistent visual degradation across all of the target images.

With the Mondrian target, it appears that almost all found solutions have adopted

a diagonal contrast as it is presumably much easier to incorporate some of the lower

power coefficients near the diagonal centre. Choice for K will need to be balanced

between providing the necessary level of detail for the target, without providing too

many options for the result to be misguided.

We will shortly see further trade-off for choice of K values when considering the

integration of phase error in our metrics.

Rank Distance Adaptation

In considering other methods to reduce the overwhelming influence of the few largest

coefficients, inspiration was taken from other parts of our GP system to consider

difference in rank. With the suggestion from Jacobs et al. that placement in the

top positions are more effective discriminators than the actual coefficient values, we

can further consider that relative powers amongst the component frequencies is an

alternative worth consideration. We go forth with the idea that frequencies ranked

higher amongst others in the target should also rank higher amongst others in the

candidate image. By summing the total difference in rank number for each coefficient

between target and candidate, we have a potential measure for disparity in how

relatively important each component frequency is.

Conceivably, this new measure may not require the truncation procedure used by

Jacobs et al., however, we will consider the cases of both K = 50 and K = 1282

(all coefficients). Checking the rank error on all positions may provide more total

precision in the ideal case, but could also easily result in poor-looking results due
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Table 5.8: Experiment J2 Summary Table

(a) K = 50

Rank Error
Target Agg. Mean Best

Mondrian
Mean 9949.74 942.40
StdDev 4901.56 89.51

Van Gogh
Mean 8299.26 718.53
StdDev 3288.52 91.19

Cable Ends
Mean 28716.72 11693.40
StdDev 7430.03 2575.71

Flower
Mean 8919.63 446.20
StdDev 6692.69 116.23

(b) All Coefficients

Rank Error
Target Agg. Mean Best

Mondrian
Mean 36856289.46 32323384.53
StdDev 2058630.46 742917.26

Van Gogh
Mean 58185631.10 53110794.60
StdDev 1817498.60 218671.21

Cable Ends
Mean 54830748.34 49263217.73
StdDev 1805632.30 130566.58

Flower
Mean 44611553.74 37384364.67
StdDev 2117072.33 437745.62

to the many very low powered (effectively non-visible) coefficients happening to be

correctly proportioned; an effective bias for the low-powered frequencies.

From Figure 5.10, the idea of using the rank of all 1282 coefficients can be dis-

carded. Candidate populations appear to have converged with very high remaining

rank error. With the extremely simplistic resultant textures, we can see that the fit-

ness measure was not able to provide strong enough guidance, where the population

prematurely converged after tweaking the ranks of a few mid rank coefficients (still

very low power and largely undetectable) and falling into a local optimum.

When we limit the ranking to the top K = 50 coefficients, we compare ranks of

the top 50 positions in the target image to the ranks at that respective position in

the candidate. From Table 5.8, most targets performed respectably, with the noted

exception of the Cable Ends target. Examining the location of the larger power

coefficients in the target (Appendix A, Figure A.1), it would seem that this may be a

difficult target for the measure due to the uncommon location of some of its higher-

powered harmonics far off on the diagonals. The results with other targets seem to
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Figure 5.10: Experiment J2 Summary Charts & Examples; K = 50
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Figure 5.10: Experiment J2 Summary Charts & Examples; All Coefficients
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be not too dissimilar from those produced by the adapted Jacobs et al. approach.

5.3.2 The Importance of Phase

A critical difference between the original metric put forth from Jacobs et al. using

wavelets, and our adaptation with Fourier transforms, is the inherent removal of any

spatial localization in our frequency analysis. Fourier analysis has a higher precision

in measuring component frequencies throughout an entire image, yet wavelets are

able to localize where power was seen in the source image based on the coefficient

indices. Thus, when the measure by Jacobs et al. was truncating coefficients, they

were capturing both some degree of frequency and also positions in the image where

the frequencies manifest.

Up until now, our proposed fitness measures have attempted to produce images

with similar amounts of component frequencies. When measuring coefficients, their

index and position (the radial angle of the coefficient from centre) has encouraged

evolution of component frequencies with similar placement, but we have largely over-

looked how these component frequencies should be offset and overlap. The other key

aspect of a Fourier transform, the phase component, has not been taken into account

for any measure. By reincorporating this measure into our fitness schemes, we may

provide some further constraints on the location of where the component frequencies

crest.

Examining Potential Gains

With the suspicion that our lack of capturing any aspect of phase has begun to limit

the extent of what we can guide through evolution, we re-examine our targets while

considering what they may look like if their component frequencies had alternative

phases. In Figure 5.11, we have highlighted some reconstructions of target images

while limiting coefficients to their top K = 50, and providing alternative phase values.

Reconstructions with various phase selections and coefficient truncations can be see

for all targets in Appendix A, Figure A.1. While there is sufficient power to begin

recreating the images in the most ideal circumstances (phase retained from the original

target), when we consider the case of alternative, random selection for phase angles,

images can become anything from heavily varied to completely unrecognisable. These

images —which may indeed show no human-recognizable similarities — would be

considered ideal solutions by our existing fitness schemes. Clearly there is a need to

incorporate phase into our fitness measures for more reliable human recognition. Some
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Figure 5.11: Reconstructing Target Images With Varied Phase
A pair of targets are chosen for reconstruction with a truncated set of Fourier ampli-
tudes paired to different phase angle values. By zeroing power in all positions except
the top K = 50 most positions, we can see the most salient positions alongside the
target in the second column. The third column is the inversed FFT reconstruction
with power limited to these truncated positions. We also show reconstructions vari-
ants using the same truncated amplitude set, but with zeroed phase angles, or phase
angles which have been produced randomly. This may adjust expectations for the
types of images evolved when phase is not considered.

targets, like the Mondrian image, still carry many similar traits when ignoring phase,

and would instead require increased precision to which coefficient positions contain

high power measures. This suggests that targets may have varying requirements for

precision in phase.

After observing the wide variety of images which could potentially satisfy our

fitness measure, we also re-examine a number of previously evolved candidate images

which were notable only for their poor visual resemblance to the target. We see

that these candidates were often not scored among the outliers, but actually held

reasonably similar top power coefficient positions. Figure 5.12 reconstructs a pair

of images which we identified as having low visual similarity to their targets. By

reconstructing the images using their targets’ phase angles, we’re given an optimistic

look at the type of images that could be expected if phase was were to be successfully

guided in evolution.

Including Phase In Fitness

With the discovery that our previous measures can produce images with reasonable

approximations to the targeted frequencies, we will now begin to also score phase
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Figure 5.12: Reconstructing J1 Results With Target Phase
Target images and an evolved candidate are compared to observe truncated power coefficient mismatch and an optimistic
estimation of results if phase angles were replicated. The previous Figure 5.7 describes the displayed power coefficients. We
now also show an image reconstruction in the first row, last column, which combines the candidates power coefficients with the
phase angles of the target image. The compared (poor) candidates show noted improvement when phase is adjusted.
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information for further evolutionary guidance. We return to our adapted Jacobs et

al. approach —or, top K mismatch — and will consider the difference of phase angle

for those top K positions. Being mindful that phase error should wrap about 2π, the

maximum difference in phase angle should be π. We normalize the phase error to

[0, 1] and square it for each of the top positions, using this error to slightly penalize

the top matching positions if they are out of phase. So as to not completely remove

the benefit of having a top ranked frequency, even if completely out of phase, we will

limit the phase error by scaling it to [0, 0.5]. Effectively, for each of the target’s top

K ranked coefficient positions, a penalty of 1.0 is added if the position is not also

ranked among the candidate’s top K, and if it is, there could be a penalty of up to

0.5 based on phase mismatch.

Error =
K
∑

i=1







0.0 + 1
2
[π−1∆( θ(T, Ti), θ(C, Ti) )]

2
, Ti ∈ C

1.0 , Ti /∈ C
(5.5)

∆(a1, a2) ≡ (a1 − a2) mod π (5.6)

We encode this in Equation 5.5: where T and C are the truncated set of coefficient

positions for the target and candidate as ordered by power. We will have Φ(V, p) and

θ(V, p) return the power and phase angle respectively of the coefficients (vectors) in

set V corresponding to coordinate p. With a slight abuse in notation, we will denote

the coordinates of the ith ranked position (by power) of a coefficient set as Si.

After further adapting the Jacobs et al. measure to include the additional phase

mismatch penalty, results are slightly underwhelming, but also show some slight im-

provements and promise. The candidates generated from these runs shown in Figure

5.13 are still quite rough, and appear largely similar to those produced by experi-

ment J1 with the phase-less coefficient mismatch measure. However, there are a few

subtle but notable differences. With the Van Gogh target, we see a more prominent

triangular profile shape from the bottom to the centre of the image (optimistically,

resembling the torso and edge of the shoulders). The candidates from the flower

target seem to be recreating a brighter object emerging from the darker edges with

some consistency. It was initially anticipated that the Mondrian target would imme-

diately benefit from the inclusion of phase information, and so it is unfortunate that

no particular differences could be recognized from its candidates produced without

phase information. We could remain slightly hopeful as, for the Mondrian target

specifically, the population has yet to fully converge despite showing similar numeric
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Table 5.9: Experiment J3 Summary Table

(a) K = 50, Linear Error

Combined Error
Target Agg. Mean Best

Mondrian
Mean 24.39 20.43
StdDev 1.51 2.03

Van Gogh
Mean 18.91 15.40
StdDev 1.39 1.19

Cable Ends
Mean 34.04 30.87
StdDev 1.99 2.46

Flower
Mean 17.60 13.95
StdDev 1.38 1.26

(b) K = 50, Squared Error

Combined Error
Target Agg. Mean Best

Mondrian
Mean 21.76 16.79
StdDev 1.57 1.82

Van Gogh
Mean 16.51 12.45
StdDev 1.69 1.90

Cable Ends
Mean 33.98 30.71
StdDev 2.11 2.70

Flower
Mean 14.87 10.76
StdDev 1.44 1.23
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Figure 5.13: Experiment J3 Summary Charts & Examples; K = 50; Linear Error



C
H
A
P
T
E
R

5
.

IN
IT

IA
L
E
X
P
L
O
R
A
T
IO

N
72

Figure 5.13: Experiment J3 Summary Charts & Examples; K = 50; Square Error
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scores to its J1 counterpart.

Comparing Table 5.9 to Table 5.7 (produced without phase penalties), we do not

see a large increase in reported error. The best individuals of the run showed an

average increase of only 1-2 points for normalized, squared phase error, though the

population means increased with the expected 10-15 points (for K = 50, average of

0.2-0.3 from a max of 0.5 per position).

Originally performed due to an oversight in our system development, we include

a variation of the current fitness scheme which used a linear, instead of square, phase

error penalty. Using squared error is effective for exacerbating the effects of the more

egregious coefficients in a set, and consequently adding pressure for evolutionary

systems to identify them as problems. The consistently higher numeric scores from

this experiment set raises some concerns over how much phase error is permitted

due to weaker guidance away from —and inability to identify — the poorly aligned

frequencies. However, there are some visual aspects and consistencies shown in these

evolved candidates which might be preferable over the square error approach.

5.3.3 Power Coefficient Error & Objective Separation

Before proceeding to optimize our phase-adapted, top K mismatch approach, we

return and consider some alternate adaptations which might make use of the full, non-

quantized power coefficient errors. From our re-constructive analysis in the previous

section, we see that the Mondrian target should still be capable of producing relatively

recognizable reproductions when phase is ignored, but we do not see this being as

prominent in actuality. We suspect, then, that there could still be some further

improvements made to capture precise power information, perhaps also with the

inclusion of phase.

We have seen that truncation of coefficients to the K most powerful has shown

an improved effect on guidance during evolution. There are still concerns that even

among the truncated set, the most powerful coefficients may be providing extreme

pressures which overshadow the remaining coefficients. There are also related con-

cerns that too large of a K value could dilute the guiding pressures of the measure, as

we have seen previously. Thus, we will truncate coefficients to the choice of K = 50,

which seemed suitable from our previous experiments, but consider schemes which

use the full coefficient error.
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Table 5.10: Experiment K1 Summary Table

Combined Error
Target Agg. Mean Best

Painting Abstract 002
Mean 47634110.79 499404.81
StdDev 15649227.61 65703.39

Painting People 004
Mean 25762310.89 2085.22
StdDev 14424950.60 1064.29

Pattern Texture 012
Mean 25789125.60 1426.70
StdDev 17115758.74 132.07

Photo Objects 005
Mean 23011363.10 29664.64
StdDev 14479664.53 26257.33

Top Power & Phase Combined Coefficient Error

In our first return to power coefficient error, we will consider a single combined mea-

sure of power and phase across the top K = 50 power coefficient positions. For each

of the K positions, we will increment our error by the difference in power between

target and candidate, and also by the squared, non-normalized (wrapped) phase angle

error (ranged in [0, π2]). This should be similar to experiment J3, but using the full

power coefficient values (instead of quantized to {0, 1}), and a non-normalized phase

angle error to hopefully prevent being completely overshadowed by the scale of the

power error. We detail the approach in Equation 5.7 which uses the truncated set of

coefficient positions for the target T and candidate C as ordered by power.

Error =
K
∑

i=1

[ Φ(T, Ti)− Φ(C, Ti) ]
2 + [∆( θ(T, Ti), θ(C, Ti) )]

2 (5.7)

This borrows notation and functions from Equation 5.5, with Φ(V, p) and θ(V, p)

returning the power and phase angle respectively of the coefficients (vectors) in set

V corresponding to coordinate p.

Interestingly, the numerical results in Table 5.10 show similar properties to those

found for experiment E4 (Table 5.5) in terms of relative error for the best individuals

amongst targets. Visual contrast between Figure 5.14 and the previous Figure 5.5

from experiment E4 suggests that this approach my be producing more similar and

novel results for some targets. Much like experiment E4, the Cable Ends target shows

exceptional numerical performance despite little resemblance to the target. To some

extent, the flower target maintains some levels of contrast as it had previously, and

the Van Gogh target is still quite abstract. The Mondrian target, however, has much
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Figure 5.14: Experiment K1 Summary Charts & Examples; K = 50



CHAPTER 5. INITIAL EXPLORATION 76

more distinct lines in many of its evolved candidates. As the Mondrian target was

the most improved, and its performance does not appear to heavily rely on phase,

it would seem that there was some success in reducing the error produced through

power coefficient mismatch, though it may not have benefited all targets.

Top Power Coefficient Error, Separate Phase Error

With the results from K1 above, the addition of phase information and the truncation

of the power coefficients to the top K positions appeared to provide us some benefits

to the more power-dependent Mondrian target. However, the other targets which

had previously shown some minor improvement when provided phase information

did not appear to show notable changes from those produced in experiment E4. It

may be advantageous to consider power and phase errors independently, both for the

subsequent analysis of relative difficulty, and to potentially increase the evolutionary

pressure for the targets showing difficulty in correcting phase.

Using the sum-of-ranks multi-objective fitness approach, we will isolate power

error and phase error as two separate objectives for the subsequent experiment. Power

error objective will be calculated from the K = 50 truncated coefficients as the above

experiment K1. The phase error objective will use the squared, normalized (wrapped)

phase angle error from the same K = 50 truncated coefficient positions. The formulae

for the objective measures are seen in Equations 5.8 to 5.9.

Errorpower =
K
∑

i=1

[ Φ(T, Ti)− Φ(C, Ti) ]
2 (5.8)

Errorphase =
K
∑

i=1

[

π−1∆( θ(T, Ti), θ(C, Ti) )
]2

(5.9)

The ability to distinguish between power and phase errors in Table 5.11 provides

us some possible insight into the difference of difficulty between targets. The poorly

performing Cable End’s target, despite showing exceptional power error scores, has

a comparatively high phase score. This may help explain why we see candidates

with poor visual quality, though this notion is offset somewhat by the target recon-

struction in Appendix Figure A.1, which suggests that power should be the stronger

requirement for this target. We can also observe that the Van Gogh target scores

comparatively well across both objectives, despite many targets having very rough

visual similarity. Between these two points, we are forced to reconfirm that difficulty
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Figure 5.15: Experiment K2 Summary Charts & Examples; K = 50
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Table 5.11: Experiment K2 Summary Table

Power Phase
Target Agg. Mean Best Mean Best

Painting Abstract 002
Mean 47587277.68 668330.39 8.13 5.68
StdDev 23422058.74 73594.34 1.53 1.58

Painting People 004
Mean 22658547.22 10685.58 6.72 4.08
StdDev 11670497.09 10433.65 1.38 1.31

Pattern Texture 012
Mean 31659288.74 1397.18 9.40 6.09
StdDev 18502531.48 65.30 2.55 2.15

Photo Objects 005
Mean 23833558.68 91515.08 9.49 6.93
StdDev 16702114.90 97110.63 2.13 1.82

is highly target-dependent.

The visual performance shown in Figure 5.15 appears to have remained similar

(if not slightly degraded with the Mondrian target) from the previous experiment.

When we examine the performance plots for both the population mean and the best

individual, we see some consistent behaviour across the two objectives. The power

objective appears to improve and converge fairly quickly, where the phase objective

is somewhat slower to stabilize. The phase objective is then either more difficult for

our system to satisfy, the power objective is converging prematurely, or both. We

will consider further refinements to the phase objective in the upcoming Section 6,

but we will attempt one more experiment to adjust our handling of power coefficient

error.

Top Power Coefficient Error, Separate Phase Error, Separate 0th Error

Our last attempt to incorporate the non-quantized (though truncated) power co-

efficient error involves extracting the single most significant power coefficient and

isolating it into its own additional fitness objective. The previous experiment left us

with the consideration that there may still be heavy bias and premature convergence

due to a small selection of key coefficients. The zero frequency, or 0th coefficient in the

2D DFT and power spectra relates to the overall offset of power required to recreate

the overall intensity of the signal or image. In many cases with images, we will see

this coefficient as the highest powered coefficient by a large margin (consider that

image sample values are not negative, so any waveforms in the image will need to

be positively offset). The 0th coefficient should be an important approximation of an

images average intensity, and should be captured. We will nonetheless try isolating it

to a separate objective so as to not unduly exclude the remaining power coefficients
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Table 5.12: Experiment K3 Summary Table

(a) K = 50

0th Power Phase
Target Agg. Mean Best Mean Best Mean Best

Painting Abstract 002
Mean 11.65 0.00 421857.04 314059.28 11.03 7.65
StdDev 5.15 0.00 80588.84 90657.25 3.03 1.86

Painting People 004
Mean 4.60 0.00 669222.23 1909.08 9.43 5.60
StdDev 4.51 0.00 455983.23 1081.65 2.90 1.74

Pattern Texture 012
Mean 10.16 0.00 142984.81 941.34 10.02 6.58
StdDev 7.33 0.00 107604.44 265.20 2.36 1.67

Photo Objects 005
Mean 23.76 0.02 451154.15 14915.58 10.91 8.26
StdDev 9.01 0.13 334762.94 3952.72 1.90 1.48

(b) K = 150

0th Power Phase
Target Agg. Mean Best Mean Best Mean Best

Painting Abstract 002
Mean 10.14 0.00 835566.64 476798.51 40.11 33.20
StdDev 5.14 0.00 235074.43 69166.89 5.32 3.66

Painting People 004
Mean 4.12 0.00 631053.51 3036.02 36.54 28.43
StdDev 4.24 0.00 396339.35 1389.43 7.16 4.97

Pattern Texture 012
Mean 8.72 0.00 197305.03 1123.29 39.06 32.62
StdDev 7.57 0.00 184609.25 284.71 3.94 3.04

Photo Objects 005
Mean 17.72 0.00 224754.35 14258.83 36.09 31.58
StdDev 5.84 0.00 104786.48 3609.90 3.26 2.95

from providing evolutionary guidance. The existing two sum-of-ranks fitness objec-

tives from the previous experiment, power error and phase error, will be maintained

in addition to this new objective. These three objectives are detailed in Equations

5.10 to 5.12.

Error0th = | Φ(T, T1)− Φ(C, T1) | (5.10)

Errorpower =
K
∑

i=2

[ Φ(T, Ti)− Φ(C, Ti) ]
2 (5.11)

Errorphase =
K
∑

i=1

[

π−1∆( θ(T, Ti), θ(C, Ti) )
]2

(5.12)

The greatest power coefficient is expected to correspond to the 0th-frequency, and

thus we have position for T1 lie at the center of the power coefficients (
{

n
2
, n
2

}

).

When observing the difference of performance between the previous experiment
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Figure 5.16: Experiment K3 Summary Charts & Examples; K = 50
While plot curves, labels, and axes are usually associated by colour, their is a notable exception in this figure (and the following
variant for K = 150), to accommodate the scale of the additional 0th coefficient objective. The dashed red lines correspond to
error between the 0th power coefficient, but despite being a power-related objective, it will be scaled along the phase axes to
better display the plot behaviour.



C
H
A
P
T
E
R

5
.

IN
IT

IA
L
E
X
P
L
O
R
A
T
IO

N
81

Figure 5.16: Experiment K3 Summary Charts & Examples; K = 150
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and the results for K = 50 in Table 5.12, there is a substantial improvement to power

scores. The 0th coefficient objective has been consistently minimized to an error

of < 0.01 for most targets, while scores for the power objective have substantially

decreased (by factors between 1.5 to 5 times). Phase has worsened only slightly,

which was not altogether unexpected considering the fixed generation count, and

additional objective to be optimized. It would seem that by isolating the 0th objective,

we have accomplished the goal of allowing the remaining coefficients to show greater

effect.

Examining the performance plots in Figure 5.16, we do largely see similar be-

haviour to the previous experiment, so it is not fully clear if we have resolved our

concerns of premature convergence. However, many of the targets do show a noisier

refinement of their best individuals. While we have seen some competition between

objectives in the previous experiment, this may be a promising signal that the power

objective has additional possibilities to explore in its guidance of the candidate im-

ages.

Figure 5.16 also shows some long-awaited visual improvements. While the Van

Gogh target remains abstract, the Cable Ends target begins to show some higher-

frequency patterns, and the flower target seems to consistently capture and evolve

either the lightened corner, or out-of-phase petal cluster. Most notable is the im-

provement to the Mondrian target, which now solidly displays similar features to the

target: crossing lines and intensity blocks.

Results with K = 150 had been omitted for the previous two experiments as

there were no notable visual changes observed. With the current fitness measure,

the change in K leads to mixed results. The Van Gogh and flower targets see little

change, and the Mondrian target appears to give less ideal visual features. The ever-

difficult Cable Ends target, with the increased K, shows an improved consistency in

its higher-frequency, seemingly noisy patterns. This is curious, as the Cable Ends

targets can provide reasonable reconstructions at only K = 10. A current suspicion

is that some of the higher-powered coefficients for this target are difficult to be guided

toward without intermediate frequencies as targets. This again signals the difference

in difficulty between certain targets.



Chapter 6

Compositional Refinement

Previous experiments have provided us with numerous fitness approaches to build

upon. Our exploration with power coefficient error schemes has resulted in an ap-

proach which may be suitable for evolving basic targets which do not require high

detail in phase information. However, many images will not be satisfied by these

constraints, and we are still somewhat lacking in our ability to guide coefficient phase

angle. In this section, we will adjust our fitness schemes to obtain a measure which

is capable of guiding and producing candidate images with phase-dependent, compo-

sitional attributes.

Table 6.1: Overview of Section 6 Experimental Variations

Label Measure K Language Tables Figures Notes

J3 J3 50 Base — 6.2 Review of J3 (current best
quantized measure) with new
compositional targets

J3 10 Base — 6.4

K3 K3 50 Base — 6.3 Review of K3 (current best
non-quantized measure) with
new compositional targets

P1 P1 50 Base 6.2 6.5 New, general-purpose measure

P1 † Polar — 6.6 K value and language adjust-
ments for survey preparation

† Choice of K in these experiments varies per target. Selections are outlined in Table 6.3, and
reiterated within the tables of this section.

83



CHAPTER 6. COMPOSITIONAL REFINEMENT 84

We introduce new targets to assist with our exploration, upon which we will first

review our current top-contending measures. We then use our findings to produce a

new measure, which we recommend for its fair performance across all targets. The

experiments of this section are outlined in Table 6.1.

6.1 Compositional Targets

The initial target set was chosen to express a varied selection of our identified image

genres and styles. Unfortunately, by this point we are still largely unable to capture

any of the finer style traits from the images in the initial target set. Contrarily, we

find that attempting to quantify and guide candidates with similar coarse composi-

tion to be more tractable. Where we expect finer, micro-scale style properties to be

captured by the higher frequency power components, we see macro-scale composi-

tional properties to be more easily expressed through the dominating low frequency

components. We have also begun to suspect that our choice of a simple GP language

may be adding to the difficulty in reproducing the finer target image traits of the

comparatively complex target images.

At this point, we refocus our efforts on the aspect of spatial composition similarity.

We consider a new set of target images which are visually simpler than our initial

set, but provides additional variation in basic but common image compositions, and

varied demands of phase precision. These new target images include compositions

frequently borrowed for evolutionary art, and we hope that they will be capable of

giving us more insights when refining our fitness measures to his end.

Figure 6.1 outlines the new compositional targets used for the refinement of our

phase related measures. Power spectra coefficient displays and reconstructions of the

new targets can be found in Appendix A, Figure A.1.

6.2 Revisiting Previous Measures

Before attempting to refine some of our previous measures, we first familiarize with

how our new target images perform with the existing fitness measures.

When we examine the performance of our previous measures on the new target

set (Table 5.1 can briefly recap our explored measures), we see some generally mixed

results. Across both J3 (Figure 6.2) and K3 (Figure 6.3), targets Composition 02

and Composition 03 (black and white split) very consistently produce near-perfect

reproductions in the initial or early generations. Conversely, targets Composition 07
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Figure 6.1: Compositional Target Set
A number of the targets are fundamentally similar, but hold variations which we
believe may provide difficulty for our measures. Composition 03 differs from Com-
position 02 by adding a rotational aspect, which is further varied in Composition 04
by changing the proportion of high and low pixel intensity. Composition 06 builds
upon Composition 05 by increasing the size and number of stripes, and in doing
so, transitions from a regular (repeating) texture to an irregular texture. Composi-
tion 08 adds translation to every odd row from Composition 07 (incidentally creating
a diagonal repetition), and Composition 12 adjusts the frequency of the overlapping
Gabors from Composition 11 to create different interference effects. Composition 01
and Composition 09 are included as examples of basic but common patterns that may
be found in abstract and minimalist artwork.

(a) Composition 01 (b) Composition 02 (c) Composition 03 (d) Composition 04

(e) Composition 05 (f) Composition 06 (g) Composition 07 (h) Composition 08

(i) Composition 09 (j) Composition 10 (k) Composition 11 (l) Composition 12
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Figure 6.2: Experiment J3 Compositional Summary Charts & Examples; K = 50



C
H
A
P
T
E
R

6
.

C
O
M
P
O
S
IT

IO
N
A
L
R
E
F
IN

E
M
E
N
T

87

Figure 6.2: Experiment J3 Compositional Summary Charts & Examples; K = 50
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Figure 6.2: Experiment J3 Compositional Summary Charts & Examples; K = 50
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Figure 6.3: Experiment K3 Compositional Summary Charts & Examples; K = 50
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Figure 6.3: Experiment K3 Compositional Summary Charts & Examples; K = 50
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Figure 6.3: Experiment K3 Compositional Summary Charts & Examples; K = 50
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and Composition 08 (the circle grids) remain difficult to reproduce throughout the

remainder of this chapter. The remaining targets show various degrees of success,

reinforcing that difficulty of the measures is highly target dependent, and affording

us space to improve with these targets. Composition 01 and Composition 09, the

minimalist art compositions, give vague but reasonable and interesting candidate

recreations with both of our existing measures. Neither the various spiral/Gabor

targets (Composition 10-12) nor the circular grid targets (Composition 07-08) show

any particularly strong circular aspects, though we do see similar contrast frequencies

and chaotic behaviour with the former, and consistent grid behaviours with the later.

Some interesting divergences appear between the two measures with a number

of the new compositional targets. With the striped targets, we see more faithful

reproductions using the K3 measure, which previously improved the striped Mondrian

target and other less phase-dependent targets. With Composition 04, we see fairly

consistent reproductions using the measure from J3, which quantized the power error

and used a single mixed objective with phase. In contrast, when using the measure

from K3, we see that a triangle similar to that of the target is produced, but placed

offset from the corner of the image – out of phase. When further evaluating the plotted

scores for this target with K3, we see that between the three fitness objective, the best

individual’s phase error objective was sacrificed and steadily increases as generations

progress. Many of the other targets show similarly high phase error values for their

best individuals.

We have also explored these targets and fitness measures with lower values chosen

for K. Figures B.1 and B.1 in Appendix B show results ak K = 10. Many of these

targets performed very well truncating the power coefficients to K = 10, and notably,

the stripes in Composition 05 and Composition 06 showed improvements with the J3

measure (Figure 6.4). With the reduced K and proportional reduction to error scores,

identical concerns were still noted regarding the sacrificed phase error objective.

We suspect that to optimize a more generalized, all-purpose measure, we will

need to increase the pressure from the phase objective, through objective weighting,

reduction of objectives, relaxing power error through quantization, phase error scaling

schemes, or some combination of the previous approaches.

6.3 Adjusting Phase Error

After a few revisions inspired by the findings of our previous experiments, we have

found a measure which appears the most promising when considered across all of our
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Figure 6.4: Experiment J3 Compositional Examples; K = 10, Composition 04-05

targets. Returning to J3 – which until now showed the most promise regarding phase

accuracy – we separate the phase error component to its own sum-of-ranks fitness

objective, and apply a scaling factor to the phase to prioritize the more powerful

components. This is more formally defined in Equations 6.1 and 6.2, and will be used

for our next experiment, P1. While the non-quantized approach performed well with

experiment K3 for the less phase-dependent targets, it was at the cost of degraded

performance of the other targets. Re-examining the quantized J3 measure with our

new compositional targets, we found reasonable performance across the entire target

set so long as K was tuned appropriately per target. From our observations of phase

in experiment K3, we saw phase was often sacrificed in lieu of power due to what

we presume was a higher inherent difficulty with that aspect during evolution. To

try and accommodate this phase objective, we add a linear scaling to each part of

the phase error sum, such that errors seen at the more powerful coefficient positions

were correspondingly more meaningful. If the phase measure cannot be completely

fulfilled during evolution, we hope we can now prioritize the offsets of the more visually

prominent (powerful) frequencies.

Errorpower =
K
∑

i=1







0.0 , Ti ∈ C

1.0 , Ti /∈ C
(6.1)

Errorphase =
K
∑

i=1







[π−1∆( θ(T, Ti), θ(C, Ti) )]
2

, Ti ∈ C

1.0 , Ti /∈ C







(

K − i+ 1

K

)

(6.2)
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Other intermediate measures created using separated phase objectives and various

scaling schemes had been attempted with negligible, if not occasionally negative,

performance changes when considering the set of targets as a whole.

Table 6.2: Experiment P1 Summary Table; K = 50

Power Phase
Target Agg. Mean Best Mean Best

Composition 01
Mean 11.51 8.03 3.03 1.51
StdDev 1.03 1.25 0.42 0.30

Composition 02
Mean 5.90 0.00 2.34 0.00
StdDev 1.10 0.00 0.48 0.00

Composition 03
Mean 3.19 0.00 1.31 0.00
StdDev 1.22 0.00 0.60 0.00

Composition 04
Mean 6.28 0.43 2.65 0.06
StdDev 1.95 1.07 0.83 0.13

Composition 05
Mean 8.51 3.23 4.39 1.93
StdDev 1.72 1.72 0.82 0.72

Composition 06
Mean 12.04 6.90 5.05 2.90
StdDev 2.15 2.70 0.78 0.90

Composition 07
Mean 34.80 31.10 15.31 13.18
StdDev 1.62 3.21 0.96 1.58

Composition 08
Mean 36.91 33.03 16.29 13.85
StdDev 4.08 5.05 2.32 2.77

Composition 09
Mean 6.16 1.37 2.48 0.17
StdDev 1.52 0.89 0.80 0.19

Composition 10
Mean 26.08 19.50 14.36 11.43
StdDev 5.00 6.46 1.65 2.12

Composition 11
Mean 23.41 19.10 11.10 8.69
StdDev 2.69 2.84 1.41 1.56

Composition 12
Mean 33.02 28.33 15.77 13.19
StdDev 2.98 3.33 1.31 1.34

We appear to have obtained reasonable success for most of our targets with this

approach (with difficulty remaining for Composition 07 and Composition 08). In-

specting the evolved examples in Figure 6.5, we see results largely similar to those

found in experiment J3, with some minor improvements to Composition 04, and vari-

ations of Composition 07-08.

Targets Composition 02-04 were found to be largely trivial with our previous J3

and K3 measures, and so they remain with P1. Results for Composition 05-06 are

of middling quality; not quite as ideal as those produced from the K1 measure, but

still very recognizable, and further improved with lower choice of K. In Table 6.2,
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Figure 6.5: Experiment P1 Compositional Summary Charts & Examples; K = 50
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Figure 6.5: Experiment P1 Compositional Summary Charts & Examples; K = 50
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Figure 6.5: Experiment P1 Compositional Summary Charts & Examples; K = 50
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we see that the phase objectives score of Composition 05-06 are comparatively lower

than the power objective scores. With the difference in calculation methods for the

two objectives, this is not unexpected, though the performance relative to some of

the other outlier targets is a welcome change. Contrarily, the higher error in the

power objective for Composition 05-06 despite the improved phase scores perhaps

corroborates the increased visual performance with lower K values. This is in line

with what we found while re-evaluating J3 (Figure 6.4) on the new target set with

K = 10, and we see similar results in the current experiment with K = 10 or K = 25.

The more artistic targets, Composition 01 and Composition 09, produce varied but

reasonably recognizable recreations.

There is still an apparent difficulty when using any measure with targets Com-

position 10-12 (spiral/Gabors), and especially Composition 07-08 (circle repetitions).

These targets show comparatively raised error values in Table 6.2 for both phase and

error objectives. When previously revisiting experiment K3 with our compositional

targets, we found excellent performance in the power objective scores, despite phase

error remaining high. Visually, results showed similar contrast frequencies, but still

often lacked compositional resemblance to the target. The current mediocrity of both

P1 objective scores on these targets is still far from ideal, but we begin to suspect that

our system is unable to further guide evolution of these targets’ properties without

compromising between power and phase. When we consider the shared spatial char-

acteristics between these high-error targets, it seems that GP language limitations,

and not fitness measures, could be unduly impeding candidates from producing cir-

cular traits. We consider it worth further investigation before any continued fitness

refinements.

6.4 Survey Preparation

While larger adjustments to our GP language will be explored later in Section 8.1,

observing the prolonged difficulty with targets Composition 07,08,10,11,12 which fea-

ture circular characteristics has led to the thought that our basic GP language is

inherently difficult for these traits. One minor adjustment which we were able to ac-

commodate prior to beginning our user validation survey was to evolve and examine

candidates through our J1 measure with a few additional coordinate variables in the

GP language set.

We briefly define the additional variables in Section 4.2.1, Table 4.5, though further

details will be outlined in 8.1. Our extension to the language set appends the two
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Table 6.3: Choice of K for Compositional Targets

Target K Target K Target K
Composition 01 25 Composition 05 25 Composition 09 25
Composition 02 10 Composition 06 10 Composition 10 50
Composition 03 10 Composition 07 50 Composition 11 25
Composition 04 10 Composition 08 50 Composition 12 25

polar coordinate variables, ρ and φ, in addition to the existing normalized X and Y

texture coordinates. We believe that this should reduce the difficulty for our system

to present circular spatial aspects as needed.

As we have determined that selection ofK should accommodate the specific target

for improved results, we have used the previous P1 runs along with those produced

with our expanded GP language to propose K values for our compositional target

set. We detail the K values chosen per target in Table 6.3, and Figure 6.6 presents

our candidates evolved using the new P1 measure, polar coordinate language set, and

selected K values.

With these adjustments to our GP language, the spiral and Gabor targets (Com-

position 10-12) show definite improvements regarding consistency and resemblance

to their targets. However, difficulty is still seen in using Composition 07 and Com-

position 08 as targets. With the inclusion of polar coordinates, we begin to see some

minor circular aspects, but our system with this measure is still having trouble pair-

ing them with grid behaviour. We will see in Section 8.1 that some minor extensions

to the GP language make these targets much more tractable. Section 8.1 will also

further explore the performance effects of the polar coordinate language adjustments.
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Figure 6.6: Polar Coordinate Language Summary Examples; K Per Target



Chapter 7

User Validation Survey

After having tested numerous refinements to our fitness measures, we found that some

of the measures appeared to have enough utility for a general purpose compositional

guide. However, as the compositional similarity of a pair of images can broach similar

discussions as computational aesthetics, we found it of great importance to conduct a

user survey and validate our findings with external observers. We need to see whether

or not our fitness measures are in line with other human opinions. By conducting a

user validation survey, it was hoped that we could remove some subjectivity regarding

the success of the fitness measures, and determine if there was viewer confirmation

of visual compositional similarity when using Fourier-guided fitness measures across

various target images.

7.1 Survey Design

As we have declared a key objective for success in compositional guidance of our

fitness measures to be the development of visually distinct groups, we must design

a survey such that we can observe the rate of successful classification between some

target, a matching generated texture, and a mismatching texture. We are hoping to

verify whether or not survey participants believe that a texture generated from a GP

run (using one of our developed fitness schemes) is more visually similar to the target

image used for the run than some other texture generated for a different target.

Survey design resembles those used by Walsh et al.[65] and Salimi [66] in their

similar use for user evaluations of fitness measures. The survey participants were

presented with a target image (used to generate a “successful”, matching candidate).

After observing the target, the user must determine which of two following images

more closely matches this target. By recording the frequency at which user opinions

101



CHAPTER 7. USER VALIDATION SURVEY 102

match the known production method (whether or not the selected image was produced

with our fitness measures), we can find the degree of success for our measure across

a number of sample pairings. Figure 7.1 shows one such sample pairing of images

included in the online survey.

Figure 7.1: An example survey question. Choice B was evolved using the shown
target image, where Choice A was evolved from a different target. Here, Choice B
would be the correct match to our measure.

The targets images used for the survey were obtained from a subset of the targets

explored in Section 6.1. Where the entire set of targets include a number of purpose-

fully similar compositional pairings, the targets for the user survey were to remain

compositionally distinct. Figure 7.2 shows the collection of targets used in the sur-

vey. As the purpose of the survey was to validate spatial and compositional features,

it was felt that including textures evolved using multiple colour channels could be

distracting to the user, and thus monochrome targets and textures were used.

In designing the user survey, the goal of obtaining statistical results was balanced

with maintaining user retention, as incomplete surveys would be discarded. It was

decided that a limit of 20 questions would provide sufficient statistical power while

not becoming a burden on the participating users. For each of the 5 target images,
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Figure 7.2: Compositional targets for user survey

4 questions were displayed, each with a matching candidate produced by using the

relevant target image, and a mismatching candidate which used one of the other

targets while being produced. The pool of possible candidates, both matching and

mismatching, were obtained from the P1 Polar experiment set, generating 30 runs

using K values of 10, 25, or 50 as appropriate for each target. The P1 Polar experi-

ment set used the P1 fitness variant with the inclusion of polar coordinate variables

to the base GP language, which was found to produce reasonable results for all of the

compositional testing target images. From this pool, a handful of obvious outliers

were first filtered out by removing candidate images whose average intensity was in

the top or bottom ∼ 2% of the intensity range (i.e. where the average pixel intensity

was below 5, or above 250, on an 8-bit monochrome image). The choices of matching

and mismatching images, placement of matching image on the questionnaire (A or

B), and ordering of questions were all produced using random number generation.

A simple user survey was developed in the form of an online questionnaire, with

hosting provided from the Brock University Department of Computer Science. The

survey was open to all public participants for a duration of four weeks, with letters

of invitation being explicitly sent to the senior students (BSc, MSc) of the Brock

University Department of Computer Science and Department of Mathematics, as well

as other acquaintances of the authors. All user survey materials have been cleared by

the Brock University Research Ethics Board (File# 16-267 ROSS). A full printout of

the survey presented to users, along with an additional analysis breakdown, has been

included in Appendix C.

7.2 Results & Analysis

Upon closure of the online questionnaire, 36 complete response sets and 3 incomplete

response sets were captured within the 4 week span. Incomplete responses were

discarded due to the possible implication of withdrawn participation consent, and

also data uniformity. An unexpectedly high success rate was found across the set of
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questions, with the lowest scoring question having a successful match rate of ∼ 60%.

We employ both the sign test andWilcoxon signed-rank test with a pre-determined

confidence level α = 0.05 . The sign test has been used by Walsh et al.[65] and Salimi

[66] in similar computer graphic user surveys. The signed-rank test can provide

stronger statistical power, but consequently, is more difficult to satisfy, and assumes

a symmetric distribution[67]. Upon collating the user survey data, the skew of the

distribution was measured to check if the symmetry assumption for the signed-rank

test was satisfied. The distribution skew was measured to be −2.225, which may

impact the confidence of the signed-rank test.

However, one can also use the signed-rank test to determine the significance of a

distribution skew about a median[68]. In comparing the skew about the median of

µ0 = 0.5 (random selection), a tailed signed-rank test provides significant reason to

believe that the observed survey results are skewed favourably toward matching the

fitness measure.

Concerning ourselves only with the improvement of successful image matches over

random selection, we consider a right-tailed test when calculating sign and signed-

rank. With the assistance of Matlab, and verification by [68], we found a significance

both through the sign test with p ≤ 0.000002, and through the signed-rank test with

p ≤ 0.00005, ensuring our required confidence of α = 0.05 was met.

A full listing of survey data, along with intermediate analysis breakdowns is dis-

played in Appendix C, Table C.1.

7.3 Conclusion

With 36 participants each answering 20 questions, we have found that there is a

statistically significant match between our selected fitness measure and human com-

positional perception. While we make no claim at this time as to the feasibility of

the fitness measure for all possible target images, we can see that when used against

basic compositional targets, visually distinct classes of images can be produced. Our

survey has validated that one of our proposed fitness measures sufficiently assesses

the unique spatial and compositional properties of simple compositional targets, and

is in-line with human perception with high statistical significance (p ≤ 0.00005).



Chapter 8

Artistic Exploration

We have reached the milestone of finding a measure capable of producing evolved

images with visually similar spatial traits. Further exploration focuses on possible

uses and performance of our measure for the production of evolutionary art. To this

end, we will consider changes to language and colour scheme, and possible relations

with aesthetics.

We will first consider enhancements and extensions to our GP language which

may better reflect some of the more full-featured languages used for evolutionary art

applications. We evaluate some possible multi-objective adaptations of our measures,

expanding our capabilities from grayscale to coloured textures across multiple colour

schemes. Based on some unanticipated observations in the upcoming explorations,

we briefly consider a related measure shown in previously explored work which could

lead to a possible new model of computational aesthetics.

8.1 Language & Representation

While a basic, trigonometric GP language was used for our initial exploration of

fitness measures, the application of evolutionary art should require the inclusion of

more creative language elements, such as noise or other geometric operators.

We had also began to suspect, based on observations in our previous P1 experi-

ment, that language restrictions were unduly limiting the possibilities of our system

to produce visually similar results with our compositional targets. When reconsider-

ing the initial genre target set (Section 5.1), we expect the effect of these restrictions

to have been further exacerbated. Prior to our validation survey, we had considered

including polar coordinates to our GP language and observed a notable improvement

with certain target images containing radial aspects. We will step back briefly to
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analyse the effects of these language changes, and check if further improvements can

be seen when including additional, more-artistic GP language elements.

Moving forward, changes to the GP language will be cumulative; experiments with

new language operators will also include all language elements explored up to that

point. After the introduction of the polar coordinate variables, most experiments use

a reduced run size of 9, due to the increased run times demanded from rendering

the increasingly intensive candidate trees. Beyond the noted language changes and

reduced run count, remaining parameters remain consistent to those listed in Section

4 (See Table 4.3).

An overview of the experiments found in this section with their summary tables

and figures is outlined in Table 8.1.

Table 8.1: Overview of Section 8.1 Experimental Variations

Label Measure K Language Tables Figures Notes

P1 P1 † Polar 8.2 8.2 Basic language with the in-
clusion of polar coordinate
variables

P1 † Circle 8.3 8.3 All previously mentioned
language elements, plus cir-
cle, grid, and offset opera-
tors

P1 † Noisy 8.4 8.4, 8.5 All previously mentioned
language elements, plus a
variety of noise operators

P1 † Noisy, −X — 8.9, 8.10 All previously mentioned
language elements, except
the X coordinate variable is
explicitly removed

† Choice of K in these experiments varies per target. Selections are outlined in Table 6.3, and
reiterated within the tables of this section.
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8.1.1 Polar Coordinates

The first adjustment to our GP language is motivated by the poor performance seen

when using targets which displayed strong radial attributes. Analysis of results from

the previous P1 experiment showed this commonality amongst poor performing tar-

gets, and so the inclusion of polar coordinates was considered as a means to reduce

the difficulty of producing rough, radiant spatial characteristics.

In addition to the standard X and Y coordinate variables, we can compute from

these the polar coordinates of a given position, as seen in Figure 8.1. By making these

values available as coordinates, we may be more likely to see candidates with transi-

tions across rotation, and radial fades or contrasts; behaviours that would be unlikely

to appear without stumbling across trigonometric operators and coincidentally re-

producing the polar coordinate transforms. As these are precisely the characteristics

that we are hoping for in the high-error targets, we were hopeful that this language

change would resolve the remaining evolutionary difficulties.

Figure 8.1: Polar Coordinate System [69]
The point M can be represented by using the pair of distance/radius (r) and radial
angle (θ) about the origin. Alternative naming conventions use rho(ρ) and phi(φ)
respectively.

Examples of candidates evolved using the polar coordinate set have been seen

previously with Figure 6.6 while preparing the user survey, and visual inspection of

the difficult targets suggested a strong partial success. We observed that the later

Composition 10-12 showed notable improvements, where some issues still remain with

Composition 07-08. When we return to the initial genre target set, Figure 8.2 shows a

few small but notable changes. With the flower target, we see a central radiant shape
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Table 8.2: Polar Language Summary Table

Power Phase
Target K Agg. Mean Best Mean Best

Composition 01 25
Mean 2.34 0.40 0.79 0.08
StdDev 0.68 0.81 0.18 0.05

Composition 02 10
Mean 6.83 0.00 2.65 0.00
StdDev 1.05 0.00 0.48 0.00

Composition 03 10
Mean 3.27 0.00 1.35 0.00
StdDev 1.19 0.00 0.55 0.00

Composition 04 10
Mean 6.32 1.20 2.12 0.08
StdDev 1.52 1.40 0.63 0.12

Composition 05 25
Mean 8.45 5.93 3.17 1.61
StdDev 1.56 1.86 0.75 0.76

Composition 06 10
Mean 12.45 6.80 5.51 3.15
StdDev 2.92 3.21 1.13 0.99

Composition 07 50
Mean 34.36 30.47 14.31 12.09
StdDev 3.26 4.44 1.16 1.46

Composition 08 50
Mean 37.15 32.67 16.35 13.81
StdDev 3.07 4.74 1.74 2.51

Composition 09 25
Mean 2.79 0.13 1.17 0.08
StdDev 0.78 0.51 0.36 0.13

Composition 10 50
Mean 15.79 9.50 8.51 5.51
StdDev 4.82 4.66 2.89 3.04

Composition 11 25
Mean 11.53 7.40 5.51 3.44
StdDev 2.51 2.74 1.08 1.15

Composition 12 25
Mean 14.59 11.20 6.33 4.65
StdDev 1.85 1.71 0.91 0.76

Mondrian 50
Mean 21.80 16.33 11.18 8.42
StdDev 2.32 2.83 1.26 1.13

Van Gogh 50
Mean 16.24 11.78 6.93 4.76
StdDev 1.35 0.83 0.65 0.45

Cable Ends 50
Mean 32.42 28.22 17.35 15.72
StdDev 1.93 2.82 0.89 1.23

Flower 50
Mean 9.87 6.00 3.91 2.31
StdDev 0.80 0.71 0.93 1.01
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Figure 8.2: Polar Coordinate Language Genre Targets Summary Charts & Examples
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with similar proportion to the flower petals in the target. With the Van Gogh target,

while still rough, we see a rather consistent return to a top-body portrait figure. A

few examples appear to be attempting to capture traits resembling a head.

A summary of all compositional targets using K = 50 can be found in Appendix B

Table B.1, but as we have found that each target shows improved performance when

matched to a specificK value, we will use these specific target-dependentK values for

Table 8.2 and also for when we compare the upcoming language changes. While we

can occasionally see some strong visual indicators that performance has improved, we

will also perform various 2-sample t-tests on the population means between language

adjustments to see if there have been any statistically significant changes beyond our

perception. We will note, of course, the unfortunate requirement to reduce run size

and the subsequent reduction of statistical power.

While we had observed improvements to the flower and Van Gogh targets from

the initial genre set, we also see significant reductions to their phase error scores, with

p < 10−19. Power error scores did show a statistically significant change, though not

to the same extent, with the flower target giving a slight improvement (p = 0.02), and

the Van Gogh actually having a minor deterioration (p = 0.03). With the composi-

tional target set, we had noted strong improvements to Composition 10-12, and this is

reflected statistically as improvements to both fitness objectives (p < 0.00001). While

it is unfortunate that the circle grid targets (Composition 07-08) did not substantially

improve, we found that Composition 07 actually showed significant improvement with

regard to phase error (p < 0.0007). However, there was a substantial amount of error

to overcome, and the improvement — while significant — is still wanting. Compo-

sition 01, which had performed quite well previously, found a slight but significant

improvement. Contrasting our improvements, we can observe a statistically signifi-

cant degradation in performance with Composition 05 (stripes). While both stripe

targets performed better without the polar coordinates, Composition 05 gives a no-

table loss with p < 0.002. This was not altogether unexpected, as the addition of

operators intrinsically tied to rotations is poorly suited for the straight stripe targets,

and a slight negative language bias should be considered.

8.1.2 Circle, Grid, & Offset

The inclusion of polar coordinate variables has improved results for certain compo-

sitional targets and some of our initial, genre image targets. Despite this, we see

that some of the seemingly simple, circular grid targets are still having difficulty re-
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Table 8.3: Circle, Grid, Offset Language Summary Table

Power Phase
Target K Agg. Mean Best Mean Best

Composition 07 50
Mean 22.51 18.00 9.44 7.28
StdDev 13.52 16.13 5.94 6.55

Composition 08 50
Mean 23.91 17.00 10.59 7.41
StdDev 6.56 8.46 2.92 3.54

producing their basic spatial aspects. Before moving forward with the multitude of

noise operators, we will first give one last attempt at recreating the difficult targets

of Composition 07 and Composition 08.

To improve the capabilities of our system and give the best possible chance of

success, we will add a set of GP language operators well-suited for these particular

targets. With inspiration from the Gentropy system by Weins [44], we will include

the circle geometric operator (which returns 1.0 if the current texel is within the

provided radius from the origin), along with the coordinate operators of tile and

shift. The circle operator provides a simplified way for the candidate programs to

show hard transitions about a radius, and the tile operator provides an easy way

to create arbitrary n × m tilings about a grid. These two operators should allow

Composition 07 to see much more success, where the additional shift operator (being

able to offset the texel window for its children) should greatly assist in producing the

alternating offset aspects in Composition 08.

Figure 8.3: Circle, Grid, Offset Language Summary Examples

We try these language changes for the two target (K = 50), and are pleased

with the results. Figure 8.3 shows a much-improved set of evolved candidate tex-



CHAPTER 8. ARTISTIC EXPLORATION 112

tures over our previous experiments. We see result categories split into approximate

thirds between featureless outliers, rough variations, and high-similarity reproduc-

tions. In addition to the strong visual improvements, when we compare Table 8.3 to

the previous Table 8.2, we see the error for these two targets decreases by ∼40% in

both objectives. A 2-sample t-test provides at most p < 0.0001 across objectives and

targets, suggesting fair statistical significance when considered with the reduced run

count.

The performance gains seen with these additional language operators is another

promising sign for our fitness measure, and reinforces the importance for language

adequacy. As these targets were one of the most difficult categories used in the user

survey, it is unfortunate that these results could not be obtained in time for that

purpose, though we see that survey results were still quite satisfactory.

8.1.3 Noise Generation

As we have now reached satisfactory results with our compositional targets, we will

return our focus to the initial, more-artistic genre targets. To help facilitate our goal

of producing evolutionary art, we will finally end our current language exploration

with the addition of numerous noise generation operators. Details regarding noise

operators can be found in Section 4.2.1. Here we begin to see significant increases to

run times.

Composition 01 and Composition 11 (in Figure 8.4) showed slight improvement

with the addition of the noise operators (p < 0.02), as did – surprisingly – Com-

position 02 (p < 0.0002). We suspect that the increased performance with Compo-

sition 02 may be due to noise operators having higher likelihood to be introduced

through mutation in the more complex candidate trees. With Composition 02 re-

quiring only a simple expression to produce an ideal candidate, and with noise being

likely to express power in many non-target coefficient positions, it may be effectively

adding additional selective pressure against the complex candidates. Composition 07-

08 showed marked improvements over their polar counterparts, but no substantial

changes from the previous evaluations with circle and tile operators included (noting

that the previous circle, tile, and shift operators are included in the noisy language

set). The other compositional targets showed either no significant improvement, or a

significant degradation, when including noise operators in their language set.

When we return to the results produced for the genre targets (Figure 8.5), we

see that the candidate images for the flower target have substantially improved. The
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Figure 8.4: Noisy Language Summary Examples; Compositional Targets; K = 50
Mixed results were reported, with statistical analysis suggesting (from top to bottom)
improvement (p < 0.02), degradation (p < 0.05), improvement (p < 0.02), and no
significant changes.
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Figure 8.5: Noisy Language Summary Charts & Examples; Genre Targets; K = 50
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Table 8.4: Noisy Language Summary Table

Power Phase
Target Agg. Mean Best Mean Best

Mondrian
Mean 20.44 16.11 11.05 9.00
StdDev 1.37 2.03 1.07 1.71

Van Gogh
Mean 13.13 9.78 5.99 4.52
StdDev 2.95 3.42 0.73 0.82

Cable Ends
Mean 30.63 26.89 16.34 14.60
StdDev 2.52 3.37 0.84 1.09

Flower
Mean 9.34 6.11 3.81 2.50
StdDev 1.69 1.36 0.40 0.69

Mondrian and Cable Ends targets at first glance have few visual differences from

their noise-less renditions, though a closer investigation shows some finer details and

frequencies can be found in what seemed to be plain, empty regions. The Van Gogh

appears to have captured some of the traits it saw previously but has them now

seemingly buried under an emergent busy and noisy layer.

Numerically, the introduction of the noise operators appears to be an improvement

for these targets, with minor but consistent reductions in both phase and power errors.

However, these changes are not largely reinforced through any statistical significance.

After the substantial and significant changes seen with the flower target when moving

from the base language to the polar coordinate extension, we had suspected that the

current visual changes would also warrant similar numerical significance, yet it is

not the case. We then begin to suspect that the current solutions have been able

to trade sharpness for positional details. Solutions using only the polar coordinate

language set tend to show stronger contrasts, like the flower and background, where

the current noise-based solutions have weaker contrasts but the benefit of expressing

individual petals. Conceivably, solutions could be biased toward placing more power

at difference coefficient positions, yet still maintain similar power and phase error

scores. These language biases may work favourably when pairing the natural flower

image with noise operators (noted for conveying more natural aesthetics), or perhaps

unfavourably, as seen with the current Van Gogh renditions.

Still, while a little different than initially expected, we are beginning to see traits

and candidates that have come to expect with evolutionary art. Figure 8.6 highlights

some of the finer details in a pair of larger renderings from current experiment for the

flower target.
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Figure 8.6: Produced Image Highlights; Noisy Language; Flower

8.1.4 Coordinate Variable Reduction

One final language experiment was performed by removing the X coordinate variable

from the language set. It was expected that removing a fundamental coordinate

variable would result in substantial difficulty for our system to produce results, and

consequently, high error scores. It is surprising to see that, despite the problems

encountered while lacking the polar coordinate variables, there were few noted changes

to performance. We do see a few small artifacts of this change through some of the

traits commonly encountered in these resultant images.

With our artistic genre targets, the flower image appears to have returned to some

of the stronger contrast results seen when using the polar coordinate set, and the Van

Gogh may be slightly more abstract and noisy (Figure 8.9). No statistically significant

changes to performance can be found. For the compositional target set, most targets

performed only slightly better numerically with the inclusion of theX coordinate, and

no statistical significance was found to favour either language set. Composition 05-

06 (the horizontal stripes) showed a slight improvement with the absence of the X

coordinate variable, but not enough to provide statistical significance with a run count

of 9.

When we inspect the evolved textures a little more closely, there appears to be two

main ways that our system and its textures have adapted to the missing coordinate

variable. Some candidates were able to glean sufficient positional information from the

remaining coordinate variables: Y , ρ, and φ. We see this in some of the more circular
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Figure 8.7: Produced Image Highlights; Noisy Language, No X; Flower

Figure 8.8: Produced Image Highlights; Noisy Language, No X; Van Gogh
On the left, we can see a snapshot of the candidate at every 20 generations. An
evolutionary strategy has emerged which gradually applies layers and refines noise
operators. The candidate is viewed atop the target image with partial transparency
in the bottom left.
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Figure 8.9: Noisy Language, No X Summary Charts & Examples; Genre Targets; K = 50
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Figure 8.10: Noisy Language, No X Summary Examples
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results from the flower target in Figure 8.9, and Composition 01, Composition 04,

and Composition 09 in Figure 8.10.

An alternative approach appears to largely forgo any direct positional information

and instead builds upon layering multiple noise operators. We see this with the

highlighted flower images in Figure 8.7, and the Van Gogh target in Figure 8.9. A

particularly notable example of this is explored in Figure 8.8. Interestingly, we see

this behaviour in the previously difficult circular targets; despite depending on the

polar coordinates, it would seem that there is still a requirement for the basic X

coordinate as well.
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8.2 Colour

While we have seen some success in the production of similar grayscale candidate

images, evolving useful textures often requires consideration of colour similarity. We

will explore how capable our proposed fitness measure can be with regards to evolving

images with similar colour distribution.

When we consider the concept of frequency analysis for colour images, we often run

into problems trying to capture intensity changes running between colour channels

[33]. Changes to average luminance cannot capture all colour changes, and spatial

features can be composed across multiple colour channels. When considering an

alternate colour model like HSL, we may run into issues with wrapping artifacts in

the hue channel.

The two main differentiating techniques we explore will be in using a separate

objective to reduce colour differences, and having colour channels receive their own

individual objectives for reduction of power spectra error in their channel.

An overview of the experiments explored in this subsection can be found in Table

8.5.

Table 8.5: Overview of Section 8.2 Experimental Variations

Label Measure K Language Tables Figures Notes

C1 P1 50 Base — 8.12 Measure applied to RGB
channels separately

C2 P1 50 Base — 8.13 Measure applied to RGB
and luminance (Y) channels
separately

P1 50 Noisy — 8.14

P1 50 Noisy, −X — 8.15

C3 P1 50 Base — 8.17 Measure applied to HSL
channels separately

C4 P1 50 Base — 8.18 Measure applied to lumi-
nance channel, CHISTQ
comparison used for colour
matching

P1 50 Noisy — 8.19

P1 50 Base — 8.20 CHISTQ used to guide
levels of graytones in
monochrome textures
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8.2.1 Colour Targets

In performing our experiments with colour, we will use the original genre targets,

but will supplement them with additional compositional images which have been

adapted to display colour properties. We had seen previously that the genre targets

were difficult to reproduce even when limited to grayscale, and so we suspect that

we may still see difficulties in reproducing shape characteristics with these targets.

However, they provide a suitable range of expected colour distributions for use with

evolutionary art.

We will borrow Composition 01, as it originally was produced with colour experi-

mentation in mind. The additional compositional targets have been created by taking

variations of the previously seen Composition 02-12 and using their intensity map to

determine values for one of the red, green, or blue (RGB) colour channels of a new

target. Figure 8.11 displays the new colour targets along with a decomposition into

their RGB colour channels. We can see that individually, the target colour channels

are familiar from our previous grayscale experiments, and had shown a decent mea-

sure of success in reproducing spatial aspects. The last target applies some additional

offsets to the image in an attempt to slightly increase evolutionary difficulty.

Between the original genre targets, and these newly created colour, compositional

targets, we expect there to be a fair range of difficulty for our colour experiments

across targets.

8.2.2 Objectives Per Colour Channel

We will continue our exploration using the system described previously. As we had

seen language sufficiency issues with targets showing radial spatial aspects, we will

include the polar coordinate variables in addition to the base GP language. We

maintain the selection of K = 50 as it produced suitable, albeit not necessarily

optimal, results for the compositional targets, and was the preferred selection for

the genre targets. To produce colour images, we will evolve three GP trees per

individual, corresponding to the RGB colour channels. With the increased tree count,

and proportional increase in rendering complexity, we will maintain our reduced run

count of 9 runs per target.

As our GP system is configured to construct candidate images across trees for

separate RGB colour channels, it is expected that these new targets will display

improved visual results over the more complex genre targets. We have seen suitable

evolutions using our system for the grayscale renderings, however the expansion to
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Figure 8.11: Colour Target Set
The coloured, compositional targets are seen in the leftmost column, followed by their
isolated red, green, and blue colour channels.
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colour textures will still pose some difficulties for these otherwise basic targets. We

cannot expect the same ease as evolving grayscale targets, as we will see an increase in

potentially conflicting fitness objectives. We will maintain the same finite population

counts and generation limits as the grayscale experiments, which effectively gives us

a harder problem with the same amount of resources. We will later briefly discuss

results using an extended generation count.

Colour Channels: RGB

Our first expansion to colour textures will be to apply our best found all-purpose

measure (P1) to each colour channel individually. Where a grayscale texture had two

objectives (power and phase), our 3-channel (RGB) colour image will use 2 × 3 = 6

objectives. Each channel will be evaluated similarly to a separate grayscale texture.

We expect that any differences between target and candidate images in a given

colour channel will manifest as different, unexpected colour artifacts at that position.

In the general case, colour dissimilarities between target and candidate will suggest an

amount of error. However, grayscale evolutions that were considered successful have

often seen similar, but still notedly different, spatial composition; exacerbated further

with creative and novel reproductions. Therein, this may be a potential limitation of

these channel-independent approaches.

The results in Figure 8.12 show some promise with our new coloured compo-

sitional targets. With Composition 01, we see that the large black section in the

top-left corner – a feature common to all of its colour channels – is consistently re-

produced. Although the colour channels for this target appear rather similar with

only minor variation, it would seem that the green channel, having a more uniform

intensity level, was favoured over the others. We can see spots of green appear in

most of the candidates as per the target image, though reds and blues ended up being

less constrained, as indicated by the frequent occurrence of magenta in the evolved

candidates.

The remaining compositional images performed to our positive expectations. The

performance of each colour channel appears to roughly coincide with the amount of

difficulty seen when evolved as separate grayscale textures. One interesting obser-

vation is in the sacrifice of power error when evolving for Composition 15. Despite

having an identical blue channel target as its predecessor Composition 14, we see ele-

vated blue channel power error which seems to be exchanged for a reduction of green

channel power error. This might suggest that the green channel is more volatile; hav-

ing a wider range of results amongst the candidates to more strongly influence the
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Figure 8.12: Experiment C1 Summary Charts & Examples
Power and phase errors for each of the red, green, and blue colour channels are plotted with their respective colour. Power error
is denoted with solid lines, where phase error uses a dashed line.
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Figure 8.12: Experiment C1 Summary Charts & Examples
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sum-of-ranks fitness. The charting for Composition 15 also shows an increased diffi-

culty in reproducing the red channel phase, which is expected due to the additional

offset placed in the red channel of the target. With the Composition 14 green chan-

nel performance being somewhat poor in contrast to its monochrome experiments,

we can also conclude that attempting to satisfy an increased number of objectives is

increasing difficulty for objectives which could be satisfied in isolation.

When we examine the more complex genre targets, we see results whose spatial

features are not dissimilar from the monochrome experiments. These features are not

quite optimal, and we had suspected that the targets would be more difficult, but they

show similar rough attributes as before. Additionally, we begin to see some colour

similarities in a few of the targets. The Mondrian and Cable Ends targets do not show

any colour similarities with sufficient consistency to make any conclusions. The Van

Gogh, with predominantly blue/cyan shades, has similar colour distributions in its

evolved candidates. The flower target also produces candidates with proportions of

green and pink/white. This control of colour through relative proportion and overlay

of RGB channels, while basic and limited, appears to have success with certain targets.

Colour Channels: Y+RGB

In an attempt to further constrain the overall composition of the image, and to cap-

ture some spatial information lost by considering colour channels in isolation, our

next experiment will include additional objectives to guide the power and phase sim-

ilarity of the average luminance of the evolved colour candidate. It is hoped that by

including these additional objectives, attempts to sacrifice any individual colour chan-

nel objective will incur further penalties from overall luminance degradation. This

scheme will effectively operate on 4 colour channels, requiring a total of 8 objectives

in our sum-of-ranks fitness approach.

Y = 0.299R + 0.587G+ 0.114B (8.1)

The conversion from colour (RGB) to grayscale (Y) will be performed using NTSC

(CCIR 601) luminance, outlined in Equation 8.1. This provides a close approxima-

tion of colorimetric luminance from the non-linear, gamma corrected RGB values.

However, due to this weighting, we consider that there might be slight bias toward

improving error for the more heavily weighted components.

The inclusion of the additional luminance channel appears to have slightly im-

proved the shape characteristics of the evolved candidates, but we see worsened colour
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Figure 8.13: Experiment C2 Summary Charts & Examples
Power and phase errors for each of the red, green, and blue colour channels are plotted with their respective colour. Errors
considered across the average luminance have been plotted in black. Power error is denoted with solid lines, where phase error
uses a dashed line.
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Figure 8.13: Experiment C2 Summary Charts & Examples
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similarity across the more complex targets. From the charting in Figure 8.13, we

see similar sacrifices being made to the blue channel power error on target Com-

position 15. For Composition 14-15, the green channel, while still worse than when

evolved in monochrome, sees some slight improvements. Composition 13 sees an

overall improvement to shape, where Composition 01 remains consistent. We see the

Van Gogh and flower targets having marginally improved spatial composition, but all

genre targets appear much rougher in colour distribution.

While we had hoped that the inclusion of a luminance channel would reduce

the occurrence of sacrifice of individual colour objectives, we occasionally see the

opposite. There is now further pressure to sacrifice an objective if its channel is

not contributing positively to the compositional shape as viewed through the lens of

averaged luminance.

As we had seen improvement in some targets by expanding the GP language,

and as our additional luminance channel objectives appear to more heavily constrain

shape, we will explore these language changes with the current fitness scheme to see

if reduced difficulty if matching shape will improve colour distribution.

In Figure 8.14, we can see the results of including the previously described noise

operators. Largely, colour distributions do not appear to have improved. We see

our basic compositional targets appear to have visually reduced similarity, though

Composition 13 is certainly far from lacking creativity. The Van Gogh target appears

to have changed, though it is not immediately clear if it is for the worse or better.

Notably, we see an improvement to shape with the flower target, including some

rather novel specimens. Colour appears to have improved slightly, which is reflected

in the terminal scores for the best found individuals per run.

To complete our exploration with language variations in this fitness approach,

we lastly reconsider removing the X coordinate variable from our language, to bias

candidates toward using noise operators. We had previously seen some improvements

with certain targets using this approach, so we will consider it for completeness.

The unfortunate results of this approach, as seen in Figure 8.15, is that most tar-

gets exhibited reduced performance in both shape and colour distribution. The noted

exception being the flower target, which, already finding improved candidates using

noise, performed similarly to the previous language set. The Mondrian target also

saw a marginal improvement to the overall luminance scores, and evolved candidates

were more likely to display variations across the vertical axis, though appearances are

still very rough approximations to the target.

In an attempt to reduce time constraints from limiting the performance of the



C
H
A
P
T
E
R

8
.

A
R
T
IS
T
IC

E
X
P
L
O
R
A
T
IO

N
131

Figure 8.14: Experiment C2 Summary Charts & Examples; Noise Language
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Figure 8.14: Experiment C2 Summary Charts & Examples; Noise Language
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Figure 8.15: Experiment C2 Summary Charts & Examples; Noise, No X
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Figure 8.15: Experiment C2 Summary Charts & Examples; Noise, No X
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produced results, we have attempted some additional experimentation using an ex-

tended GP generation limit of 200. In cursory results, a marginal change to scores

was observed where sacrificed objectives were exacerbated and no particular visual

changes were noticed. It would seem that candidates had already converged toward

particular areas of the search space by that time.

While overall colour distribution could be improved, we did see increased per-

formance when targets held colour channels which could be replicated as grayscale

targets individually. As our GP system is constructing its candidates along these

same RGB colour channels, this is not an unexpected finding, so much as a mat-

ter of sufficiency. While considering these limitations, we were still able to replicate

shape and colour for a number of targets, and were able to produce some novel – if

rough – variations of the targets. Some highlights have been shown in Figure 8.16.

Colour Channels: HSL

From the previous experiment, we saw that using luminance may assist in replicating

shape characteristics while guiding evolution in colour images. We also hypothesized

and observed that unexpected colours could appear where there were incongruities

between candidate and target in even one colour channel. In an attempt to capture

changes in perceived colour without these contrasting artifacts, we consider using

a different colour channels, such as hue, saturation, and lightness (HSL). Our pro-

duction of the candidate images will remain the same, reverting back to our basic

GP language with polar coordinates added. However, instead of processing the RGB

channel values with our power spectra measures, we will first convert our colour

channels into the HSL colour space.

Unfortunately, it would appear that using our fitness measure on HSL channels

provides a substantial degradation in visual performance. From Figure 8.17, we can

see that many targets have poor spatial similarity, and almost all fail in obtaining

matching colour distributions. Many of the targets which perform well numerically

still show very rough visual performance. Some interesting observations can be made

from Composition 13, Composition 15, and the flower target. For these targets, we see

some reasonable, though rough, spatial similarities, and comparatively low numerical

error. Notable, is that these shapes emerge without being constrained to the original

RGB channels of the target, and that the colours of these shapes are actually quite

different. We would expect alignment of the correct hue to be determined by hue

phase measures. Shapes emerging with incorrect hue may then suggest that further

pressure and accuracy will be required with regards to phase in this channel, and
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Figure 8.16: Experiment C2 Highlights

(a) Experiment C2; Composition 13; Noise language

(b) Experiment C2; Flower; Noise language

(c) Experiment C2; Flower; Noise language, no X
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Figure 8.17: Experiment C3 Summary Charts & Examples
Power and phase errors for each of the hue, saturation, and luminance colour channels are plotted using cyan, magenta, and
black respectively. Power error is denoted with solid lines, where phase error uses a dashed line.
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Figure 8.17: Experiment C3 Summary Charts & Examples
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that an adjustment to the P1 fitness scheme may be needed if we are to pursue this

approach to colour.

Potentially, the disparity between constructing images across RGB channels and

evaluating them using HSL could be creating an extra amount of difficulty for the

system when guiding image evolution. Small changes to a single GP tree, while only

changing a single RGB colour channel, may be creating wide-scale changes to the

evaluated HSL representations. Reproductive operations on the GP trees may then

be seen as overly destructive, and the system shows difficulty in guiding candidates.

8.2.3 Separating Shape & Colour

We see success with certain targets when using the previous fitness measures on the

isolated colour channels, but there is an obvious alternate approach to guiding similar

colour distributions: using separate colour and shape objectives. To capture shape,

we will use the existing P1 fitness measure across the grayscale luminance channel

as discussed in experiment C2. To capture and guide colour, we will consider the

CHISTQ measure as proposed by QBIC Project [57].

There are numerous measures for colour similarity which have seen use in search

and retrieval systems, though the CHISTQ measure, a histogram difference weighted

by colour similarity, has also previously shown promise with evolutionary texture

systems [44][70]. The CHISTQ measure first finds the differences between each of

the target and candidate histogram bins. Each bin difference is then factored with

every other bin difference and a similarity measure, all summed together to form the

histogram distance weighted by colour similarity. The goal is to provide a measure

of histogram similarity which is able to account for perceptual distance between dif-

ferences in pairs of quantized colours. This is more formally defined in Equation 8.2

[57].

CHISTQ = ZTAZ (8.2)

A(i, j) = 1− d(ci, cj)/dmax (8.3)

After quantizing both target and candidate images into suitable bins, we can produce

the normalized element by element difference (or bin difference) Z. We will have A

denote a normalized, symmetric colour similarity matrix, as defined by Equation 8.3.

Results from the QBIC Project found MTM and LUV colour distance to perform well

for their retrieval system, though we will adopt a simple euclidean distance in RGB
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colour space, d, as used by [70]. We will also follow with their choice of binning to 3

bits per colour channel.

In experiments using both the polar coordinate language set, and its expansion

to noise operators, the C4 experiments using the CHISTQ objective produce results

with spatial attributes similar to their C2 experiment counterparts. In Figures 8.18

and 8.19, we see familiar compositional reproductions, and similar properties with

the replicated genre targets. When we render the evolved candidates into a grayscale

representation, we find that there are the same style of spatial properties, and similar

performance for the genre targets as when evolving grayscale candidates.

Composition 13-15 have candidates which show some colour properties common

to their targets, and proportional lower error scores in the CHISTQ objective. Many

of the other targets have dissimilar colour distributions and higher CHISTQ errors.

It appears that, while the CHISTQ objective converges when measured through the

population mean, the best found individuals routinely ignore the measure to ac-

commodate the other two semi-dependant spatial objectives. It is possible that for

Composition 13-15, produced with simpler compositions in each colour channel, guid-

ing the evolutionary search space toward spatial matches also worked favourably for

colour similarity. Conversely, the more complex targets would need further incen-

tive to yield spatial traits for colour, possibly considering adjusted weighting between

sum-of-ranks objectives.

As an interesting aside, we found that the CHISTQ measure also had a notable

influence on the more complex, grayscale compositional targets. In Figure 8.20, we

note that the addition of the CHISTQ objective has led to grayscale candidates which

have a more similar proportion of intensity levels, with only minor loss of spatial

similarity.
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Figure 8.18: Experiment C4 Summary Charts & Examples
Keeping in-line with the previous recent figures, power and phase errors for across the average luminance have been plotted in
black. Power error is denoted with solid lines, where phase error uses a dashed line. The CHISTQ error measure is plotted in
magenta along the phase axes, scaled by a power of 10 to maintain a reasonable graph window. Grayscale interpretations of
evolved candidates are shown beneath their colour renditions.
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Figure 8.18: Experiment C4 Summary Charts & Examples
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Figure 8.19: Experiment C4 Summary Charts & Examples; Noise Language
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Figure 8.19: Experiment C4 Summary Charts & Examples; Noise Language
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Figure 8.20: Experiment C4 Grayscale Compositional Summary Charts & Examples
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8.3 Spatial Frequencies & Comfort

In the course of evolving the many candidate images with each target and experiment

set, we identified a number of evolved images which we believe displayed unpleasant

or uncomfortable spatial aspects. Previous research from Fernandez and Wilkins [41]

found correlations between intensity level contrasts at certain spatial frequencies with

increased levels of discomfort.

To further discuss the findings of Fernandez and Wilkins, we need to adjust some

of our terminology. The concept of spatial frequency denotes a cyclical nature across

a measured space, such as the re-occurrence of Gabor and grating peaks along the

width of an image. Our study is predicated over power coefficient positions directly

relating to these spatial frequencies. While we have found great utility in comparing

spatial frequencies relative to image width, human perception requires consideration

of an observers field of view. To better capture this, we can use calculations of visual

angle – when paired with known viewing distance and image size – to compute a

relative measure of angular spatial frequency.

Figure 8.21: Calculation of Spatial Frequency

V = 2 arctan

(

S

2D

)

(8.4)

With spatial frequencies known in terms of fractional image width, we can use Equa-

tion 8.4 to interpolate their corresponding visual angle V when observed with size S

at a distance of D.

Returning to Fernandez and Wilkins, their study observed that images with in-

creased amplitudes at a few octaves around 3 cycles per visual degree corresponded

with higher reports of image discomfort. We have explored numerous schemes in the

previous sections to constrain and obtain specific spatial frequencies of a target image

in our newly evolved candidates. With a direct relation between relative visual degree

and absolute image spatial frequencies, we hold high hopes that these findings may

be combined to the effect of a new aesthetic model.
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Figure 8.22: Jesmond Barn by Debbie Ayles c© 2003, with inspiration from a basilar
artery migraine. Additional images can be found at the artist’s website:
http://www.debbieaylesartist.co.uk/varicolour.

If we are to accept that certain angular spatial frequencies can produce discomfort,

then it should follow that the same image can be more or less pleasant depending on

its size or distance when viewed. To this end, we can see a number of example images

which appear to display these properties. One interesting example is seen in Figure

8.22, where an observation made at a distance may more easily reveal details than

when examined up close (though these details once again blur once some distance

threshold is exceeded). From afar, we may more readily observe the creativity of the

piece and can identify parts of the painted structure. Conversely, we have received a

number of anecdotes suggesting visual strain or discomfort when viewed more closely.

This phenomenon is by no means limited to this individual piece. Some images we

have found in the course of our experimentation which were noted for displaying

uncomfortable aspects have been highlighted in Figure 8.23 (resized to fit in this

report and to reduce discomfort).

It has been theorized (in spatial frequency theory) that the human visual cortex

operates through analysis of light receptor spatial frequencies [38][39]. With support-

ing works finding sensitivity in animals to certain spatial frequency ranges [54][71],

it is not surprising to think that humans may also be more sensitive to contrasts at

certain spatial frequencies. As seen through the previous image examples, we can

http://www.debbieaylesartist.co.uk/varicolour
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Figure 8.23: Evolved Images With Uncomfortable Spatial Properties
Selection of images with uncomfortable aspects was performed with images sized to
12” side lengths at a viewing distance of 24”. (Identical angular spatial frequencies
can be obtained when this page is viewed at a distance of 4.1”, though we suspect
that the eye strain induced from close proximity viewing will cause further undue
discomfort.)

(a) (b)

(c) (d)
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corroborate that intensity contrasts at certain visual frequencies are uncomfortable;

seen as discordant and at times even painful.

As angular spatial frequencies require a defined image size and distance, we should

consider how these could affect our analysis. We have used a consistent image size

of 12”, at a viewing distances of 24”-32”, which was chosen to mirror our office

configuration. With increased image size producing the inverse effects of increased

viewing distance, we can extrapolate results and limit our examination to changing

the latter. In Figure 8.24, we examine an image that was immediately noted for

uncomfortable aspects, and explore how small changes in view distance can offset

which angular spatial frequencies have high power. As we might expect, an increase

in view distance (or decrease in image size) shifts power to the lower angular spatial

frequencies, and a decrease in view distance (or increase in image size) aligns power

with the higher angular spatial frequencies.

At our initial observation distances of 24”-32”, the noted mark for 3.0 cycles/degree

aligns closely to a pair of more highly powered frequency ranges. Minor changes to

viewing distance leave these elevated ranges as still firmly inside the “3.0± 2 octaves”

suggestion. When we alter the viewing distance to 50”, and no longer observe the

same visual strain as before, we unfortunately still note the presence of the highly

powered frequency ranges within an octave of 3.0 cycles/degree. Conceivably, the

image may still be displaying less desirable angular spatial frequencies, though not

to the extent of noted discomfort. Nonetheless, it may be necessary to further refine

the prioritized frequency ranges.

When we consider some additional image samples noted for their discomfort, we at

times find a lack of elevated frequency ranges shown through the radial average, such

as the examples in Figure 8.25. We were also surprised to find that our prototypical

example, extolled by Fernandez and Wilkins’ paper [41], shows a similar lack of ele-

vated power around their proposed frequency ranges (Figure 8.26). Noting the same

concerns of excessive abstraction that were made during our näıve fitness schemes, we

consider an alternate approach to the radial average which might better capture the

observed contrasts in the image. When we extract the maximum error found amongst

the radial bins, instead of the average, we can find some slightly stronger frequencies

near the targeted 3.0 cycles/degree, though it is not as clear if those are indeed the

responsible frequencies.

With these findings, a couple of foreseen limitations can be considered. The first,

and least negotiable concern, holds that viewing size and distance must be considered

before evolution. While minor adjustments can be made without inducing sudden un-
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Figure 8.24: Angular Spatial Frequency Analysis - Distance Variations
At the top left we have the analysed image, beneath which is their power spectra
coefficients display, and radially averaged power spectra. The top right graph plots
power of the absolute spatial frequencies relative to image width, below which are the
spatial frequencies calculated relative to visual angle at various viewing distances. As
recommended by Fernandez and Wilkins, octaves about 3 cycles/degree have been
marked.
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Figure 8.25: Angular Spatial Frequency Analysis: Various
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Figure 8.26: Angular Spatial Frequency Analysis: Jesmond Barn

(a) Mapping Across Radially Averaged Power Spectra

(b) Mapping Across Radially Maximized Power Spectra
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pleasant effects in the image, adapting the newly created images for purposes outside

their considered intent may display unforeseen, less desirable traits. An immediately

conceived use case may be with user fitness schemes in evolutionary art systems.

With interactive or hybrid fitness depending on user-evaluated thumbnails, large in-

congruities may appear between the rated thumbnails and full-size renderings.

An additional reservation may be found when considering synthesis of smaller

images. As we decrease image size, we will see the 3.0 cycles/degree mark shift toward

the lower frequencies within an image. As we have seen that these lower frequencies

typically hold higher power, an attempt to reduce power in these frequencies for the

goal of aesthetics may provide its own unexplored bias in the search space. We have

seen that attempting to change the lower frequency components in a image provides

heavy-handed guidance which may greatly change the composition of the images, and

negatively affect other objectives if not considered carefully.

The last concern is the most critical, but the one we are now most capable of

identifying and accommodating. A näıve reduction to power within a range of fre-

quencies can alter an image to something unrecognisable. We have seen that core

compositional information can be stored in 50 or so positions, as witnessed with our

experiments in choice for truncation size, K. We can easily expect some of these

critical frequencies to lay within the “3.0± two octaves” range identified, and so a

blanket frequency reduction should expect poor results with spatial similarity. If no

other spatial attributes are sought in the evolved images, this penalty for power in the

3.0 angular spatial frequency range could provide a novel aesthetic measure for ex-

ploration, but some refinements will be needed otherwise. If provided a target power

spectra, we might propose an aesthetic objective which penalizes a surplus of power

in these frequency ranges. From our observations above, we might also suggest a dis-

tribution of weights to provide harsher penalties when closer to the 3.0 cycles/degree

mark.

Despite a number of concerns having been identified, our exploration with power

spectra fitness measures has given us a tool to resolve some of them. We also suspect

that beyond the correlation with discomfort and the given angular spatial frequency

ranges, there may be a need to consider interactions with the phase of these frequen-

cies and their harmonics. We hold high hopes that, with further exploration in the

future, novel aesthetic models can be developed from these findings.



Chapter 9

Conclusion

9.1 Summary

With our background and literature review, compounded with our experimental anal-

ysis, we have increased our familiarity with how power spectra relates to the original

image spatial attributes.

Our initial, näıve approach of using various power spectra abstractions for guid-

ance was found to be either inadequate, or intractable. While these measures such as

the radially averaged power spectra or its regressions may be suitable for providing

discrimination during retrieval or classification, they cannot provide sufficient guid-

ance for evolutionary texture synthesis. We find that these approaches allow evolution

to quickly and prematurely converge on very basic gradients or shapes.

In attempting to reduce and direct evolutionary pressures, we confirm that the

visually salient compositional aspects of an image can be extracted from a small

number of power and phase coefficient positions. Specifically, we find that the target-

dependent count of coefficients performs well at 10 ≤ K ≤ 150, with K = 50 perform-

ing well for many targets. Optimizations incorporating power spectra symmetry may

find good results with K halved. Experimentation confirms that prioritizing more

highly powered frequencies gives a useful method for feature extraction. The trun-

cation and quantization approach suggested by Jacobs et al. [45] shows good utility

when adapted for Fourier analysis in an evolutionary application.

Certain targets (such as the Mondrian painting) favoured the more precise, non-

quantized error, where others found difficulty in receiving suitable evolutionary guid-

ance unless relaxing error to a count of matching, top-ranked positions. In addi-

tion, we found that although certain targets were less dependent on precise phase

alignment, most targets could become unrecognisable without consideration of phase.
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The precise method of incorporating phase for evolutionary guidance can be target-

dependent, and generally difficult.

We recommend the measures employed for experiment P1 (Section 6.3) as a suit-

able general-purpose compositional guide, which performed well amongst most com-

positional and genre targets. Suitable guidance to power was found through the

truncated, quantized error approach, effectively minimizing the mismatched posi-

tions between target and candidate for the highest powered frequencies. The more

successful pairing of phase information measured phase error weighted linearly with

respect to the position’s rank amongst the other top K coefficients.

Our user survey validates that our general-purpose compositional spatial measure

can reproduce images from a target which share visually distinct spatial similarities.

We found a statistically significant match between our selected fitness measure and

human perception when evaluated amongst the class of basic compositional images.

Performance in other target image genres can be improved, and we begin to see

increased performance when GP language operators are adjusted for the target.

Where our fitness measures are capable of providing spatial guidance during evo-

lution, language bias and sufficiency cannot be overlooked. Adjustments to GP lan-

guage and evolution scheme can strongly influence the candidates explored within the

evolutionary search space. Minor language adjustments can ease or increase difficulty

and tractability for certain spatial traits, image genre, or composition.

When adapting our general-purpose fitness measure for synthesis of colour im-

ages, we see an increased difficulty occurring from exacerbated troubles of language

sufficiency. Using power and phase measures along the isolated colour channels, we

saw success with target images where the intensity maps of each colour channel could

have been reproduced as a grayscale target. When incorporating a separate colour

distribution objective, such as CHISTQ, we find objective weighting and language

considerations are required to prevent shape and colour guidance working in mutual

exclusion.

Having identified and analysed a number of less pleasing images produced by our

system, our exploration corroborates the findings of Fernandez and Wilkins [41] that

certain angular spatial frequencies can be linked to discomfort. Despite a number of

concerns having been identified in encoding the phenomenon into an aesthetic model,

our exploration with power spectra fitness measures has given us a tool to resolve

some of them. We expect that novel aesthetic models may be developed from these

findings in the future.
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9.2 Future Work

In addition to the findings concluded in this report, a large number of avenues remain

available for further study. Our guided exploration, while extensive, is by no means

exhaustive. A number of alternative approaches and extensions were identified but

could not be fully examined, and numerous insights were formed in the analysis of

our latter experiments.

The initial exploration with combining both power and phase measures has re-

sulted in phase error being scaled by the significance of its related power coefficient.

In developing a multi-objective measure to capture spatial characteristics, the (scaled)

weighting between power and phase coefficients has remained largely even. Further

refining these weights, particularly in regards to the multi-objective schemes, could

benefit from further exploration. The addition of colour measures has shown that

phase or power objectives may be sacrificed for colour at a greater scale than ex-

pected. Being able to properly tie the phase and power objectives together through

scaling or other approaches may be needed to more effectively integrate additional

objectives, such as for colour or other aesthetic measures. For possible improvements

in producing coloured images, we would propose further study with objective weight-

ing. With the Y+RGB approach in experiment C2, we question if adjustment to

weighting for luminance channel objectives could refine the trade-off between shape

and colour. Likewise with CHISTQ in experiment C4, it may be interesting to see if

heavier CHISTQ weighting and extended generation limits could guide candidates to

those with improved colour traits.

Another tool identified to resolve some of the issues regarding Fourier deconstruc-

tion with colour channels was the recently proposed Quaternion Fourier Transform

(QFT) [34], which has seen use with colour image analysis. While we had hoped to

further explore this measure during this research, we had found ourselves unable to

give adequate attention to this extended measure, focusing instead on adjustments to

the canonical Discrete Fourier Transform. The QFT has shown promise in capturing

similar spatial information while overcoming the limitations we observed with colour

channel artifacts. We are hopeful that future studies can explore its adaptation for

evolving colour image composition, and providing the attention deserved.

An intermediate approach for colour, between independent (RGB) colour chan-

nel analysis and the previously mentioned Quaternion Fourier Transform, was the

frequency analysis of the image across alternative colour schemes. We had seen cer-

tain target perform well when evolved and evaluated using RGB colour channels, but
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perform poorly when evaluated using HSL. We suspect that certain targets may see

further success when evolved using GP trees mapped to alternative colour channels,

such as the mentioned HSL, or YCbCr. Examining these effects with other colour

channels, and perhaps identifying optimal colour schemes based on the target image,

could be an interesting approach for further research.

While we explored the effectiveness of our measures along a single target for a

subset of the possible identified genres, a focussed exploration into each genre could

be conducted to evaluate particular effectiveness. We have seen that GP language

and windowing can substantially bias how the results are guided through the search

space, and the images produced. However, even across visually similar images, the

regularity of the image pattern did not appear to substantially affect results (visually

or statistically) for simple compositional recreations. A refinement based on these

distinctions may show better performance.

Further, each genre may see benefits from domain-specific GP language adjust-

ments and particular refinements away from our general-purpose fitness measures.

The language used for our exploration was very simple and algebraic, which leant

itself to producing images similar to our compositional targets, but found difficulty

in producing the more complex genre targets. The introduction of noise and polar

coordinate variables provided a definite bias to the search space, and optimized per-

formance with certain targets. If we are interested in improving similarity with the

genre targets, then a more expansive and artistic language may be required. Many

of the artistic GP systems explored in the literature offer insights into additional op-

erators and grammars that could be used to this end. We would be most interested

in seeing results attempted with more strongly typed, convolutional languages like

those shown by Reynolds[72], amongst others.

Prior to settling on our general-purpose fitness measure from experiment P1, we

had observed that certain targets showed improved performance with quantized power

error measures, where others showed improvement without quantization. Despite the

quantized power measures giving comparatively lax guidance in the initial generations

(to positive effect), it may be interesting to return to the full and specific error measure

after the search space has begun to converge to candidates with approximate shape.

Adjusting the fitness measure to this end after a number of generations, or after a

certain performance threshold is met, could conceivably provide further refinement to

targets which previously performed well using non-quantized power error. We could

also find interest in adopting an island model GP approach with populations taking

different truncation and quantization schemes for both power and phase.
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One factor largely ignored through our exploration was the use of various windows

and their subsequent effects on key coefficient extraction. While some trials have been

done prior to experimentation, the absence of any windowing on images executed

before processing was a decision made to keep in line with existing research found in

our literature review. This, however, could still be an oversight persisted from early

research, and is itself contradicted from other papers on non-regular signal processing.

The effectiveness of our measures could benefit from further study with windowing.

Symmetry presents an existing aesthetic model which has seen successful use in

texture synthesis [47]. While not as complete as other methods of measuring symme-

try, an analysis of phase angles in powerful coefficient positions can possibly capture

mirror symmetries about the origin, as well as tiling aspects. With certain art gen-

res and cultures centred about this aesthetic model [73], power spectra analysis may

assist in guiding composition subject to these constraints, and warrants further in-

vestigation.

Existing work with wavelet analysis had given large inspiration to a number of

our measures’ approaches. Abandoning the spatial locality of the wavelet coefficients

for the precision of the Fourier amplitudes has provided us a measure of overall com-

positional similarity, but can be limiting when trying to capture specific subregions

of an image. Further comparison between the individual strengths of Fourier and

wavelet analysis should be explored in the context of evolutionary texture synthe-

sis. We question if a hybrid model, using measures from both wavelet and Fourier

decompositions, could permit evolutions with tunable amounts of compositional and

feature replication.

Lastly, we strongly recommend further examination of the uncomfortable image

frequencies identified by Fernandez and Wilkins [41]. We have made a cursory ex-

amination of the phenomenon in Section 8.3, and formed proposals and hypotheses

based on our previous observations with using power spectra measures for evolu-

tionary guidance. However, there are still doubtless many further considerations,

refinements, and experiments to be addressed before the phenomenon can be en-

coded into a useful aesthetic model. We hope to have provided additional resources

and encouragement toward its construction, and eagerly await the results of continued

research.



Bibliography

[1] David S Ebert. Texturing & modeling: a procedural approach. Morgan Kaufmann,

2003.

[2] Marc Hull and Simon Colton. Towards a general framework for program genera-

tion in creative domains. In Proceedings of the 4th International Joint Workshop

on Computational Creativity, pages 137–144, 2007.

[3] Maryam Baniasadi and Brian J. Ross. Exploring non-photorealistic render-

ing with genetic programming. Genetic Programming and Evolvable Machines,

16(2):211–239, June 2015.

[4] Craig Reynolds. Interactive evolution of camouflage. Artificial Life, 17(2):123–

136, Spring 2011.

[5] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Io-

sup. Procedural content generation for games: A survey. ACM Transactions on

Multimedia Computing, Communications, and Applications (TOMM), 9(1):1–22,

2013.

[6] John H Holland. Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. 1975.

[7] Karl Sims. Artificial evolution for computer graphics. ACM Computer Graphics,

25(4):319–328, July 1991. SIGGRAPH ’91 Proceedings.

[8] D Stork. Computer image analysis of paintings and drawings: An introduction

to the literature. In Proceedings of the Image Processing for Artist Identification

Workshop, 2008.

[9] Jana Zujovic, Lisa Gandy, Scott Friedman, Bryan Pardo, and Thrasyvoulos N

Pappas. Classifying paintings by artistic genre: An analysis of features & clas-

159



BIBLIOGRAPHY 160

sifiers. In Multimedia Signal Processing, 2009. MMSP’09. IEEE International

Workshop on, pages 1–5. IEEE, 2009.

[10] Dirk Neumann and Karl R Gegenfurtner. Image retrieval and perceptual simi-

larity. ACM Transactions on Applied Perception (TAP), 3(1):31–47, 2006.

[11] Daniel J Graham and David J Field. Variations in intensity statistics for represen-

tational and abstract art, and for art from the eastern and western hemispheres.

Perception, 37(9):1341–1352, 2008.

[12] Daniel Graham. Art statistics and visual processing: insights for picture coding.

In Picture Coding Symposium, 2009. PCS 2009, pages 1–4. IEEE, 2009.

[13] Daniel J Graham and Christoph Redies. Statistical regularities in art: Relations

with visual coding and perception. Vision Research, 50(16):1503–1509, 2010.

[14] Craig Neufeld, Brian J Ross, and William Ralph. The evolution of artistic filters.

The art of artificial evolution, pages 335–356, 2008.

[15] Ken Perlin. Improving noise. In ACM Transactions on Graphics (TOG), vol-

ume 21, pages 681–682. ACM, 2002.

[16] Lode Vandevenne. Texture generation using random noise. http://lodev.org/

cgtutor/randomnoise.html, 2004. [Online; accessed 2017-09-06].

[17] PM Nishad. Various colour spaces and colour space conversion. Journal of Global

Research in Computer Science (UGC Approved Journal), 4(1):44–48, 2013.

[18] SharkD. Hsl color solid cylinder. https://commons.wikimedia.org/wiki/File:

HSL_color_solid_cylinder_alpha_lowgamma.png. [Online; accessed 2017-09-

18; under Creative Commons Attribution-Share Alike 3.0 Unported http://

creativecommons.org/licenses/by-sa/3.0/deed.en].

[19] SharkD. Rgb color solid cube. https://commons.wikimedia.org/wiki/File:

RGB_color_solid_cube.png. [Online; accessed 2017-09-18; under Creative Com-

mons Attribution-Share Alike 3.0 Unported http://creativecommons.org/

licenses/by-sa/3.0/deed.en].

[20] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

http://lodev.org/cgtutor/randomnoise.html
http://lodev.org/cgtutor/randomnoise.html
https://commons.wikimedia.org/wiki/File:HSL_color_solid_cylinder_alpha_lowgamma.png
https://commons.wikimedia.org/wiki/File:HSL_color_solid_cylinder_alpha_lowgamma.png
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en


BIBLIOGRAPHY 161

[21] Penousal Machado, Juan Romero, Amı́lcar Cardoso, and Antonino Santos. Par-

tially interactive evolutionary artists. New Generation Computing, 23(2):143–

155, 2005.

[22] Simon Colton, Michael Cook, and Azalea Raad. Ludic considerations of tablet-

based evo-art. In Applications of Evolutionary Computation, pages 223–233.

Springer, 2011.

[23] Jinhong Zhang, Rasmus Taarnby, Antonios Liapis, and Sebastian Risi. Draw-

compileevolve: Sparking interactive evolutionary art with human creations. In

Evolutionary and Biologically Inspired Music, Sound, Art and Design, pages

261–273. Springer, 2015.

[24] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison Wesley, 1989.

[25] P.J. Bentley and J.P. Wakefield. Finding acceptable solutions in the pareto-

optimal range using multiobjective genetic algorithms. In Soft Computing in

Engineering Design and Manufacturing. Springer Verlag, 1997.

[26] D. Corne and J. Knowles. Techniques for highly multiobjective optimisation:

Some nondominated points are better than others. In Proc. GECCO 2007, pages

773–780. ACM Press, 2007.

[27] Brian J. Ross and Han Zhu. Procedural texture evolution using multiobjective

optimization. New Generation Computing, 22(3):271–293, 2004.

[28] Brian J. Ross, William Ralph, and Hai Zong. Evolutionary image synthesis

using a model of aesthetics. In Gary G. Yen, Lipo Wang, Piero Bonissone, and

Simon M. Lucas, editors, Proceedings of the 2006 IEEE Congress on Evolutionary

Computation, pages 3832–3839, Vancouver, 6-21 July 2006. IEEE Press.
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Appendix A

Target Analysis

Below, in each of the first (leftmost) columns, we have the various targets used in

our explorations showed with their respective 2D Fourier decomposition power coef-

ficients. We then consider isolating the top K coefficients of the target, and recon-

structing the image using only those coefficients.

The second column shows the locations of the isolated coefficients. The third col-

umn shows the isolated coefficients in red and overlayed to better show their place-

ments in the full power decomposition grid. The fourth column uses the inverse

Fourier transform to reconstruct an image using only the magnitude and phase of the

K isolated coefficient positions. The fifth and sixth columns reconstruct an image

similar to the fourth column, but using a constant zero phase value, or random phase

values respectively.

The randomized phase values persist across all values ofK for a given target image

in the below illustrations.
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Figure A.1: Target image analysis with FFT decompositions and reconstructions

(a) Abstract Painting - Mondrian
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(b) Portrait Painting - Van Gogh
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(c) Texture Photo - Cable Cross-Section
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(d) Object Photo - Flower
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(e) Composition 01
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(f) Composition 02
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(g) Composition 03
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(h) Composition 04
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(i) Composition 05
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(j) Composition 06
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(k) Composition 07
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(l) Composition 08
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(m) Composition 09
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(n) Composition 10
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(o) Composition 11
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(p) Composition 12
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Extended Results Data
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Figure B.1: Experiment J3 Compositional Summary Charts & Examples; K = 10
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Figure B.1: Experiment J3 Compositional Summary Charts & Examples; K = 10



A
P
P
E
N
D
IX

B
.
E
X
T
E
N
D
E
D

R
E
S
U
L
T
S
D
A
T
A

187

Figure B.1: Experiment J3 Compositional Summary Charts & Examples; K = 10
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Figure B.2: Experiment K3 Compositional Summary Charts & Examples; K = 10
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Figure B.2: Experiment K3 Compositional Summary Charts & Examples; K = 10
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Figure B.2: Experiment K3 Compositional Summary Charts & Examples; K = 10
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Figure B.3: Experiment P1 Compositional Summary Charts & Examples; K = 10
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Figure B.3: Experiment P1 Compositional Summary Charts & Examples; K = 10
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Figure B.3: Experiment P1 Compositional Summary Charts & Examples; K = 10
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Figure B.4: Experiment P1 Compositional Summary Charts & Examples; K = 25
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Figure B.4: Experiment P1 Compositional Summary Charts & Examples; K = 25
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Figure B.4: Experiment P1 Compositional Summary Charts & Examples; K = 25
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Figure B.5: Polar Coordinate Language Summary Charts & Examples; K = 10
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Figure B.5: Polar Coordinate Language Summary Charts & Examples; K = 10
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Figure B.5: Polar Coordinate Language Summary Charts & Examples; K = 10
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Figure B.6: Polar Coordinate Language Summary Charts & Examples; K = 25
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Figure B.6: Polar Coordinate Language Summary Charts & Examples; K = 25
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Figure B.6: Polar Coordinate Language Summary Charts & Examples; K = 25
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Figure B.7: Polar Coordinate Language Summary Charts & Examples; K = 50
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Figure B.7: Polar Coordinate Language Summary Charts & Examples; K = 50
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Figure B.7: Polar Coordinate Language Summary Charts & Examples; K = 50
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Table B.1: Polar Language Summary Table; K = 50

Power Phase
Target Agg. Mean Best Mean Best

Composition 01
Mean 10.98 7.80 2.94 1.48
StdDev 1.15 1.37 0.42 0.29

Composition 02
Mean 6.83 0.00 2.65 0.00
StdDev 1.05 0.00 0.48 0.00

Composition 03
Mean 3.27 0.00 1.35 0.00
StdDev 1.19 0.00 0.55 0.00

Composition 04
Mean 6.32 1.20 2.12 0.08
StdDev 1.52 1.40 0.63 0.12

Composition 05
Mean 9.54 4.33 4.84 2.43
StdDev 2.16 2.48 0.92 1.02

Composition 06
Mean 12.45 6.80 5.51 3.15
StdDev 2.92 3.21 1.13 0.99

Composition 07
Mean 34.36 30.47 14.31 12.09
StdDev 3.26 4.44 1.16 1.46

Composition 08
Mean 37.15 32.67 16.35 13.81
StdDev 3.07 4.74 1.74 2.51

Composition 09
Mean 6.66 1.50 2.65 0.13
StdDev 1.33 0.86 0.77 0.10

Composition 10
Mean 15.79 9.50 8.51 5.51
StdDev 4.82 4.66 2.89 3.04

Composition 11
Mean 21.07 15.97 10.79 8.26
StdDev 2.14 2.85 1.30 1.55

Composition 12
Mean 29.10 23.93 14.04 11.76
StdDev 3.79 4.70 1.60 1.82
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Figure B.8: Circle, Gird, Offset Language Summary Charts & Examples; K = 50



APPENDIX B. EXTENDED RESULTS DATA 208

Figure B.9: Evolved Candidate Image With GP Tree - Grayscale

(a) Experiment P1; K = 50; Noisy Language;
Mondrian Target; Generation 60
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Figure B.10: Evolved Candidate Image With GP Tree - Colour

(a) Experiment C2; K = 50; Noisy Language,
No X; Flower Target; Generation 100.
Colour channels have been isolated and dis-
played alongside the evolved image.



Appendix C

User Survey & Data

A total of 36 complete sets of answers were acquired from the user survey. There were

also 3 incomplete sets which have been removed, as exiting the browser had been an

indicated method for users to withdraw participation consent.

We consider µ = 0.5, comparing our mean and median against random selection

chance.

Table C.1: User survey data and partial analysis

Question % Correct ∆µ0
Ordered Signed Rank

1 0.9722 +0.4722 +0.1389 + 1
2 0.9444 +0.4444 +0.3056 + 2
3 0.9722 +0.4722 +0.3611 + 3
4 1.0000 +0.5000 +0.3889 + 4
5 1.0000 +0.5000 +0.4167 + 5
6 0.9444 +0.4444 +0.4444 + 6 7
7 0.9722 +0.4722 +0.4444 + 7 7
8 0.9444 +0.4444 +0.4444 + 8 7
9 0.9167 +0.4167 +0.4722 + 9 11
10 1.0000 +0.5000 +0.4722 + 10 11
11 0.6389 +0.1389 +0.4722 + 11 11
12 0.9722 +0.4722 +0.4722 + 12 11
13 1.0000 +0.5000 +0.4722 + 13 11
14 0.8611 +0.3611 +0.5000 + 14 17
15 1.0000 +0.5000 +0.5000 + 15 17
16 0.8889 +0.3889 +0.5000 + 16 17
17 0.9722 +0.4722 +0.5000 + 17 17
18 1.0000 +0.5000 +0.5000 + 18 17
19 1.0000 +0.5000 +0.5000 + 19 17
20 0.8056 +0.3056 +0.5000 + 20 17
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Sign Test

The median for the null hypothesis should

reflect a random selection. A reasonable

confidence interval will be used.

µ0 = 0.5

α = 0.005

We’re comparing against 20 samples, none

of which were excluded for matching µ0.

n = 20− 0 = 20

For each sample, we obtain the difference

from µ0

We obtain a count of the positively signed

differences, and a count of the negatively

signed differences.

n+ = 20

n− = 0

The critical value to compare against for a

double-tailed test would be the greater of

the two counts. For our right-tailed test,

we will use n+.

T = 20

Tn;α = T20;0.005 = 14

Since T > Tn;α, we can reject the null hy-

pothesis with a p ≤ 0.005 confidence level.

Our observations are significant.

Wilcoxon Signed-Rank Test

The median for the null hypothesis should

reflect a random selection. A reasonable

confidence interval will be used.

µ0 = 0.5

α = 0.005

We’re comparing against 20 samples, none

of which were excluded for matching µ0.

n = 20− 0 = 20

For each sample, we obtain the difference

from µ0, and arrange them in ascending

order by absolute value. Rankings are

provided by this order, where groups of

identical absolute values obtain the aver-

age rank of that group.

Determine the sum-of-ranks for positively

signed differences, and the sum-of-ranks

for negatively signed differences.

ΣR+ = 210

ΣR− = 0

The critical value to compare against for

a double-tailed test would be the lesser of

the two sum-of-rank values. For our right-

tailed test, we will use ΣR−.

T = 0

Tn;α = T20;0.005 = 14

Since T < Tn;α, we can reject the null hy-

pothesis with a p ≤ 0.005 confidence level.

Our observations are significant.
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Evolving Textures Using 2D Power Spectra

Principal Investigator, Faculty
Supervisor

Dr. Brian Ross

Department of Computer Science

Brock University

(905) 688-5550 Ext. 4284

bross@brocku.ca

Student Investigator

Michael Gircys

Department of Computer Science

Brock University

mg12vp@brocku.ca

Invitation

You are invited to participate in a study that involves research. The research will involve

your participation in an online survey.

My ongoing MSc thesis research focuses on artificial intelligence software that generates

abstract computer images. The computer software uses mathematical measurements to

help generate new images that are visually similar to other existing images. The purpose

of this online survey is to obtain some human opinions on the quality of the images

generated by this system. In particular, we wish to determine how strong the similarity is

between our computer-generated images and the existing images from a human's point

of view. Our goal is to statistically determine whether the mathematical measures used

by the software are useful in matching with human's opinions about the images.

What's Involved

In this online survey, you will be presented with an existing art work, and two computer

generated images. You will be asked to select the computer-generated image that you

feel has a stronger visual similarity to the art work. There will be 20 example sets of

images that you will be asked to evaluate, and the expected duration will be no more

than 5 minutes in total. The survey will be conducted as an online questionnaire.

Potential Benefits and Risks

This study will benefit the scientific community by providing statistical support to our

mathematical models, correlating attributes in generated images with the abilities of

human perception. It is hoped that these results can improve tools related to

computational intelligence and machine vision.

There are no known or anticipated risks associated with participation in this study.

The anonymous nature of the survey means that we cannot confirm or deny your

participation in the survey.

Confidentiality

Participants do not have to include any personal identification, such as name or email

address. All recorded data will be anonymous. No information will be collected that will

link your responses to your identity. All data collected during this study will be stored as

part of my research and will be added to the appendix of my thesis. The digital data will

be stored electronically in an encrypted archive on a local hard disk, and will be available

to me and my supervisor. Although digital data may eventually be destroyed, completed

survey data will reside in the thesis appendix for perpetuity. Note that incomplete

surveys may not be used.

PSD Survey - Intro http://cosc.brocku.ca/~mg12vp/survey/

1 of 2 2017-04-13 12:00

Voluntary Participation

Participation in this study is voluntary. If you wish, you may decline to answer any

questions or participate in any or all components of the study. Incomplete surveys will

not be included in the research analysis. Further, you may decide to withdraw from this

study at any time during the survey, and may do so without any penalty (e.g. you may

close your browser at any time). However, it will not be possible to withdraw from

participation after the survey has been completed, since it will not be possible to identify

and remove a specific participant's responses from the collected data.

Publication of Results

Participants can read about the results of this research in my completed thesis upon

submission (anticipated in 2017/18), via the library's online collection. Results of this

study may also be published in professional journals and presented at conferences. Data

from this survey may be used by other researchers to validate results and figures within

the thesis. Additional information about this study, an overview of results, as well as the

thesis (upon completion), will be available at http://www.cosc.brocku.ca/~bross/ .

Contact Information and Ethics Clearance

If you have any questions about this study or require further information, please contact

Michael Gircys and Dr. Brian Ross using the contact information provided above. This

study has been reviewed and received ethics clearance through the Research Ethics

Board at Brock University. If you have any comments or concerns about your rights as a

research participant, please contact the Research Ethics Office at (905) 688-5550 Ext.

3035, reb@brocku.ca.

This research is partially supported by NSERC Discovery Grant 138467.

This study has been reviewed and received ethics clearance through Brock University's

Research Ethics Board (file #16-267).

Thank you for your assistance in this project.

Please keep a copy of this form for your records.

Consent Form

By clicking the web button below, I indicate that:

I have read and understood the above information.

I am 17 years of age or older.

I agree to participate in this study. I have made this decision based on the

information I have read in the Information-Consent Letter.

I have had the opportunity to receive any additional details I wanted about the

study and understand that I may ask questions in the future.

I understand that I may withdraw this consent at any time during the survey.

I should keep a copy of this consent form (web page) for my records.

There is no time limit to any question and no wrong answers, however, questions cannot

be revisited.

Next

PSD Survey - Intro http://cosc.brocku.ca/~mg12vp/survey/
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Survey: Evolving Textures Using 2D Power Spectra 6 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.6 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 7 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.7 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 8 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.8 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 9 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.9 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 10 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.10 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 11 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.11 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 12 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.12 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 13 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.13 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 14 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.14 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 15 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.15 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 16 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.16 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 17 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.17 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 18 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.18 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 19 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.19 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra 20 / 20

Target

Please select the image below which you feel is most similar to the target above.

Choice A Choice B

Next

PSD Survey - Q.20 http://cosc.brocku.ca/~mg12vp/survey/#
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Survey: Evolving Textures Using 2D Power Spectra DONE

Thank you for your assistance in this project.

Additional information regarding this research project and other related works may be

found at

http://www.cosc.brocku.ca/~bross/

PSD Survey - Complete http://cosc.brocku.ca/~mg12vp/survey/#

1 of 1 2017-04-13 12:05
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Table C.2: User survey raw data by question

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 1 1

1u07p8omppjb2oqrtkadvdn2v6 1 1

2mbikr6emk41b87kr46d68fh44 1 1

4pv1c0oi66fe06q2ck66lg3o73 1 1

53tkvqq01r0jv30au4ikr2eb20 1 1

5f6po4ekr3bm57pik3md4tnub1 1 1

5n8u49lvgs7r2pl76msom9s8v7 1 1

5rovl713rmqdn7mo4h7l5ln5n3 1 1

6rubc1hv5phadum9njf847an21 1 1

74bi9bd7o2ukkvfso9m18jou11 1 1

7rj4aa2crif7lsrhson62ron41 1 1

8ejfs86cb24g1udak26v5itop4 1 1

8ncopsrtca2mqqh9qmulkc79t4 1 1

8o1in7idjqhsf9va07uo6g1jk3 1 1

997f013mqp3p2h2qnpm58lcb76 1 1

9d1ol1p49nbnuilumoutrjtcq2 1 1

9m4evllj7tm1q9icls8l5o40m4 1 1

biabpokjnk132lu2keb9nhmtd5 1 1

c7bmbkeriqjfr85sm3vcbth933 1 1

csli5u3ms3rtg8qht0rfihd6q3 1 1

e0s8q070do39qcm87s3mktbfj6 1 1

euc6ho5uqo8vputqo7u0jnihc1 1 1

frj8s3fd1po84uje7sftrh85m5 1 1

gj0e3kmm5tuaasosvnidri1663 1 1

i97epapdrhnh3sisupuju7orb0 1 1

ij381i664lbmd2lrorlts4jnj2 1 1

msdnp47br71gdv11iu1dgnrt43 1 1

nfnkmvflpcukql8pvdsdds4r22 1 1

o4ceqglln1nphd7c6kb4b93923 1 1

oep8758jc2ae7983kml3qqupf2 1 1

p3beelqe1gbd8tk2qic2hbfej5 1 1

qt4orejugu7hqbd0m8jr7j9d56 1 1

rde6dsetg9tn721f8efl1giug5 1 0

risfv5f45sjkj2k0hsjhb0cnp2 1 1

umbkj3outn2q0u4ogi1nhm0d86 1 1

vulccmpfd9kigtnm76qvekukl1 1 1

0en70q9b8o6bn6bgfkhcf2i8h7 2 1

1u07p8omppjb2oqrtkadvdn2v6 2 0

2mbikr6emk41b87kr46d68fh44 2 1

4pv1c0oi66fe06q2ck66lg3o73 2 1

53tkvqq01r0jv30au4ikr2eb20 2 1

5f6po4ekr3bm57pik3md4tnub1 2 1

5n8u49lvgs7r2pl76msom9s8v7 2 1

5rovl713rmqdn7mo4h7l5ln5n3 2 1

6rubc1hv5phadum9njf847an21 2 1

74bi9bd7o2ukkvfso9m18jou11 2 1

7rj4aa2crif7lsrhson62ron41 2 1

8ejfs86cb24g1udak26v5itop4 2 1

8ncopsrtca2mqqh9qmulkc79t4 2 1

8o1in7idjqhsf9va07uo6g1jk3 2 1

997f013mqp3p2h2qnpm58lcb76 2 1

9d1ol1p49nbnuilumoutrjtcq2 2 1

9m4evllj7tm1q9icls8l5o40m4 2 1

biabpokjnk132lu2keb9nhmtd5 2 0

c7bmbkeriqjfr85sm3vcbth933 2 1

csli5u3ms3rtg8qht0rfihd6q3 2 1

e0s8q070do39qcm87s3mktbfj6 2 1

euc6ho5uqo8vputqo7u0jnihc1 2 1

frj8s3fd1po84uje7sftrh85m5 2 1

gj0e3kmm5tuaasosvnidri1663 2 1

i97epapdrhnh3sisupuju7orb0 2 1

ij381i664lbmd2lrorlts4jnj2 2 1

msdnp47br71gdv11iu1dgnrt43 2 1

nfnkmvflpcukql8pvdsdds4r22 2 1

o4ceqglln1nphd7c6kb4b93923 2 1

oep8758jc2ae7983kml3qqupf2 2 1

p3beelqe1gbd8tk2qic2hbfej5 2 1

qt4orejugu7hqbd0m8jr7j9d56 2 1

rde6dsetg9tn721f8efl1giug5 2 1

risfv5f45sjkj2k0hsjhb0cnp2 2 1

umbkj3outn2q0u4ogi1nhm0d86 2 1

vulccmpfd9kigtnm76qvekukl1 2 1

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 3 1

1u07p8omppjb2oqrtkadvdn2v6 3 1

2mbikr6emk41b87kr46d68fh44 3 1

4pv1c0oi66fe06q2ck66lg3o73 3 1

53tkvqq01r0jv30au4ikr2eb20 3 1

5f6po4ekr3bm57pik3md4tnub1 3 1

5n8u49lvgs7r2pl76msom9s8v7 3 1

5rovl713rmqdn7mo4h7l5ln5n3 3 1

6rubc1hv5phadum9njf847an21 3 1

74bi9bd7o2ukkvfso9m18jou11 3 1

7rj4aa2crif7lsrhson62ron41 3 1

8ejfs86cb24g1udak26v5itop4 3 1

8ncopsrtca2mqqh9qmulkc79t4 3 1

8o1in7idjqhsf9va07uo6g1jk3 3 1

997f013mqp3p2h2qnpm58lcb76 3 1

9d1ol1p49nbnuilumoutrjtcq2 3 1

9m4evllj7tm1q9icls8l5o40m4 3 1

biabpokjnk132lu2keb9nhmtd5 3 1

c7bmbkeriqjfr85sm3vcbth933 3 1

csli5u3ms3rtg8qht0rfihd6q3 3 1

e0s8q070do39qcm87s3mktbfj6 3 1

euc6ho5uqo8vputqo7u0jnihc1 3 1

frj8s3fd1po84uje7sftrh85m5 3 1

gj0e3kmm5tuaasosvnidri1663 3 1

i97epapdrhnh3sisupuju7orb0 3 1

ij381i664lbmd2lrorlts4jnj2 3 1

msdnp47br71gdv11iu1dgnrt43 3 1

nfnkmvflpcukql8pvdsdds4r22 3 1

o4ceqglln1nphd7c6kb4b93923 3 0

oep8758jc2ae7983kml3qqupf2 3 1

p3beelqe1gbd8tk2qic2hbfej5 3 1

qt4orejugu7hqbd0m8jr7j9d56 3 1

rde6dsetg9tn721f8efl1giug5 3 1

risfv5f45sjkj2k0hsjhb0cnp2 3 1

umbkj3outn2q0u4ogi1nhm0d86 3 1

vulccmpfd9kigtnm76qvekukl1 3 1

0en70q9b8o6bn6bgfkhcf2i8h7 4 1

1u07p8omppjb2oqrtkadvdn2v6 4 1

2mbikr6emk41b87kr46d68fh44 4 1

4pv1c0oi66fe06q2ck66lg3o73 4 1

53tkvqq01r0jv30au4ikr2eb20 4 1

5f6po4ekr3bm57pik3md4tnub1 4 1

5n8u49lvgs7r2pl76msom9s8v7 4 1

5rovl713rmqdn7mo4h7l5ln5n3 4 1

6rubc1hv5phadum9njf847an21 4 1

74bi9bd7o2ukkvfso9m18jou11 4 1

7rj4aa2crif7lsrhson62ron41 4 1

8ejfs86cb24g1udak26v5itop4 4 1

8ncopsrtca2mqqh9qmulkc79t4 4 1

8o1in7idjqhsf9va07uo6g1jk3 4 1

997f013mqp3p2h2qnpm58lcb76 4 1

9d1ol1p49nbnuilumoutrjtcq2 4 1

9m4evllj7tm1q9icls8l5o40m4 4 1

biabpokjnk132lu2keb9nhmtd5 4 1

c7bmbkeriqjfr85sm3vcbth933 4 1

csli5u3ms3rtg8qht0rfihd6q3 4 1

e0s8q070do39qcm87s3mktbfj6 4 1

euc6ho5uqo8vputqo7u0jnihc1 4 1

frj8s3fd1po84uje7sftrh85m5 4 1

gj0e3kmm5tuaasosvnidri1663 4 1

i97epapdrhnh3sisupuju7orb0 4 1

ij381i664lbmd2lrorlts4jnj2 4 1

msdnp47br71gdv11iu1dgnrt43 4 1

nfnkmvflpcukql8pvdsdds4r22 4 1

o4ceqglln1nphd7c6kb4b93923 4 1

oep8758jc2ae7983kml3qqupf2 4 1

p3beelqe1gbd8tk2qic2hbfej5 4 1

qt4orejugu7hqbd0m8jr7j9d56 4 1

rde6dsetg9tn721f8efl1giug5 4 1

risfv5f45sjkj2k0hsjhb0cnp2 4 1

umbkj3outn2q0u4ogi1nhm0d86 4 1

vulccmpfd9kigtnm76qvekukl1 4 1

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 5 1

1u07p8omppjb2oqrtkadvdn2v6 5 1

2mbikr6emk41b87kr46d68fh44 5 1

4pv1c0oi66fe06q2ck66lg3o73 5 1

53tkvqq01r0jv30au4ikr2eb20 5 1

5f6po4ekr3bm57pik3md4tnub1 5 1

5n8u49lvgs7r2pl76msom9s8v7 5 1

5rovl713rmqdn7mo4h7l5ln5n3 5 1

6rubc1hv5phadum9njf847an21 5 1

74bi9bd7o2ukkvfso9m18jou11 5 1

7rj4aa2crif7lsrhson62ron41 5 1

8ejfs86cb24g1udak26v5itop4 5 1

8ncopsrtca2mqqh9qmulkc79t4 5 1

8o1in7idjqhsf9va07uo6g1jk3 5 1

997f013mqp3p2h2qnpm58lcb76 5 1

9d1ol1p49nbnuilumoutrjtcq2 5 1

9m4evllj7tm1q9icls8l5o40m4 5 1

biabpokjnk132lu2keb9nhmtd5 5 1

c7bmbkeriqjfr85sm3vcbth933 5 1

csli5u3ms3rtg8qht0rfihd6q3 5 1

e0s8q070do39qcm87s3mktbfj6 5 1

euc6ho5uqo8vputqo7u0jnihc1 5 1

frj8s3fd1po84uje7sftrh85m5 5 1

gj0e3kmm5tuaasosvnidri1663 5 1

i97epapdrhnh3sisupuju7orb0 5 1

ij381i664lbmd2lrorlts4jnj2 5 1

msdnp47br71gdv11iu1dgnrt43 5 1

nfnkmvflpcukql8pvdsdds4r22 5 1

o4ceqglln1nphd7c6kb4b93923 5 1

oep8758jc2ae7983kml3qqupf2 5 1

p3beelqe1gbd8tk2qic2hbfej5 5 1

qt4orejugu7hqbd0m8jr7j9d56 5 1

rde6dsetg9tn721f8efl1giug5 5 1

risfv5f45sjkj2k0hsjhb0cnp2 5 1

umbkj3outn2q0u4ogi1nhm0d86 5 1

vulccmpfd9kigtnm76qvekukl1 5 1

0en70q9b8o6bn6bgfkhcf2i8h7 6 1

1u07p8omppjb2oqrtkadvdn2v6 6 1

2mbikr6emk41b87kr46d68fh44 6 1

4pv1c0oi66fe06q2ck66lg3o73 6 1

53tkvqq01r0jv30au4ikr2eb20 6 1

5f6po4ekr3bm57pik3md4tnub1 6 1

5n8u49lvgs7r2pl76msom9s8v7 6 1

5rovl713rmqdn7mo4h7l5ln5n3 6 1

6rubc1hv5phadum9njf847an21 6 1

74bi9bd7o2ukkvfso9m18jou11 6 1

7rj4aa2crif7lsrhson62ron41 6 1

8ejfs86cb24g1udak26v5itop4 6 1

8ncopsrtca2mqqh9qmulkc79t4 6 1

8o1in7idjqhsf9va07uo6g1jk3 6 1

997f013mqp3p2h2qnpm58lcb76 6 1

9d1ol1p49nbnuilumoutrjtcq2 6 0

9m4evllj7tm1q9icls8l5o40m4 6 1

biabpokjnk132lu2keb9nhmtd5 6 1

c7bmbkeriqjfr85sm3vcbth933 6 1

csli5u3ms3rtg8qht0rfihd6q3 6 1

e0s8q070do39qcm87s3mktbfj6 6 1

euc6ho5uqo8vputqo7u0jnihc1 6 1

frj8s3fd1po84uje7sftrh85m5 6 1

gj0e3kmm5tuaasosvnidri1663 6 1

i97epapdrhnh3sisupuju7orb0 6 1

ij381i664lbmd2lrorlts4jnj2 6 0

msdnp47br71gdv11iu1dgnrt43 6 1

nfnkmvflpcukql8pvdsdds4r22 6 1

o4ceqglln1nphd7c6kb4b93923 6 1

oep8758jc2ae7983kml3qqupf2 6 1

p3beelqe1gbd8tk2qic2hbfej5 6 1

qt4orejugu7hqbd0m8jr7j9d56 6 1

rde6dsetg9tn721f8efl1giug5 6 1

risfv5f45sjkj2k0hsjhb0cnp2 6 1

umbkj3outn2q0u4ogi1nhm0d86 6 1

vulccmpfd9kigtnm76qvekukl1 6 1
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Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 7 1

1u07p8omppjb2oqrtkadvdn2v6 7 1

2mbikr6emk41b87kr46d68fh44 7 1

4pv1c0oi66fe06q2ck66lg3o73 7 1

53tkvqq01r0jv30au4ikr2eb20 7 1

5f6po4ekr3bm57pik3md4tnub1 7 1

5n8u49lvgs7r2pl76msom9s8v7 7 1

5rovl713rmqdn7mo4h7l5ln5n3 7 1

6rubc1hv5phadum9njf847an21 7 1

74bi9bd7o2ukkvfso9m18jou11 7 1

7rj4aa2crif7lsrhson62ron41 7 1

8ejfs86cb24g1udak26v5itop4 7 1

8ncopsrtca2mqqh9qmulkc79t4 7 1

8o1in7idjqhsf9va07uo6g1jk3 7 1

997f013mqp3p2h2qnpm58lcb76 7 1

9d1ol1p49nbnuilumoutrjtcq2 7 1

9m4evllj7tm1q9icls8l5o40m4 7 1

biabpokjnk132lu2keb9nhmtd5 7 1

c7bmbkeriqjfr85sm3vcbth933 7 1

csli5u3ms3rtg8qht0rfihd6q3 7 1

e0s8q070do39qcm87s3mktbfj6 7 1

euc6ho5uqo8vputqo7u0jnihc1 7 1

frj8s3fd1po84uje7sftrh85m5 7 1

gj0e3kmm5tuaasosvnidri1663 7 1

i97epapdrhnh3sisupuju7orb0 7 1

ij381i664lbmd2lrorlts4jnj2 7 0

msdnp47br71gdv11iu1dgnrt43 7 1

nfnkmvflpcukql8pvdsdds4r22 7 1

o4ceqglln1nphd7c6kb4b93923 7 1

oep8758jc2ae7983kml3qqupf2 7 1

p3beelqe1gbd8tk2qic2hbfej5 7 1

qt4orejugu7hqbd0m8jr7j9d56 7 1

rde6dsetg9tn721f8efl1giug5 7 1

risfv5f45sjkj2k0hsjhb0cnp2 7 1

umbkj3outn2q0u4ogi1nhm0d86 7 1

vulccmpfd9kigtnm76qvekukl1 7 1

0en70q9b8o6bn6bgfkhcf2i8h7 8 1

1u07p8omppjb2oqrtkadvdn2v6 8 0

2mbikr6emk41b87kr46d68fh44 8 1

4pv1c0oi66fe06q2ck66lg3o73 8 1

53tkvqq01r0jv30au4ikr2eb20 8 1

5f6po4ekr3bm57pik3md4tnub1 8 1

5n8u49lvgs7r2pl76msom9s8v7 8 1

5rovl713rmqdn7mo4h7l5ln5n3 8 1

6rubc1hv5phadum9njf847an21 8 1

74bi9bd7o2ukkvfso9m18jou11 8 1

7rj4aa2crif7lsrhson62ron41 8 1

8ejfs86cb24g1udak26v5itop4 8 1

8ncopsrtca2mqqh9qmulkc79t4 8 1

8o1in7idjqhsf9va07uo6g1jk3 8 1

997f013mqp3p2h2qnpm58lcb76 8 1

9d1ol1p49nbnuilumoutrjtcq2 8 1

9m4evllj7tm1q9icls8l5o40m4 8 1

biabpokjnk132lu2keb9nhmtd5 8 1

c7bmbkeriqjfr85sm3vcbth933 8 1

csli5u3ms3rtg8qht0rfihd6q3 8 1

e0s8q070do39qcm87s3mktbfj6 8 1

euc6ho5uqo8vputqo7u0jnihc1 8 1

frj8s3fd1po84uje7sftrh85m5 8 1

gj0e3kmm5tuaasosvnidri1663 8 1

i97epapdrhnh3sisupuju7orb0 8 1

ij381i664lbmd2lrorlts4jnj2 8 1

msdnp47br71gdv11iu1dgnrt43 8 0

nfnkmvflpcukql8pvdsdds4r22 8 1

o4ceqglln1nphd7c6kb4b93923 8 1

oep8758jc2ae7983kml3qqupf2 8 1

p3beelqe1gbd8tk2qic2hbfej5 8 1

qt4orejugu7hqbd0m8jr7j9d56 8 1

rde6dsetg9tn721f8efl1giug5 8 1

risfv5f45sjkj2k0hsjhb0cnp2 8 1

umbkj3outn2q0u4ogi1nhm0d86 8 1

vulccmpfd9kigtnm76qvekukl1 8 1

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 9 1

1u07p8omppjb2oqrtkadvdn2v6 9 1

2mbikr6emk41b87kr46d68fh44 9 0

4pv1c0oi66fe06q2ck66lg3o73 9 1

53tkvqq01r0jv30au4ikr2eb20 9 1

5f6po4ekr3bm57pik3md4tnub1 9 1

5n8u49lvgs7r2pl76msom9s8v7 9 1

5rovl713rmqdn7mo4h7l5ln5n3 9 1

6rubc1hv5phadum9njf847an21 9 1

74bi9bd7o2ukkvfso9m18jou11 9 1

7rj4aa2crif7lsrhson62ron41 9 1

8ejfs86cb24g1udak26v5itop4 9 1

8ncopsrtca2mqqh9qmulkc79t4 9 1

8o1in7idjqhsf9va07uo6g1jk3 9 1

997f013mqp3p2h2qnpm58lcb76 9 1

9d1ol1p49nbnuilumoutrjtcq2 9 1

9m4evllj7tm1q9icls8l5o40m4 9 1

biabpokjnk132lu2keb9nhmtd5 9 1

c7bmbkeriqjfr85sm3vcbth933 9 1

csli5u3ms3rtg8qht0rfihd6q3 9 0

e0s8q070do39qcm87s3mktbfj6 9 1

euc6ho5uqo8vputqo7u0jnihc1 9 1

frj8s3fd1po84uje7sftrh85m5 9 1

gj0e3kmm5tuaasosvnidri1663 9 1

i97epapdrhnh3sisupuju7orb0 9 1

ij381i664lbmd2lrorlts4jnj2 9 1

msdnp47br71gdv11iu1dgnrt43 9 1

nfnkmvflpcukql8pvdsdds4r22 9 1

o4ceqglln1nphd7c6kb4b93923 9 0

oep8758jc2ae7983kml3qqupf2 9 1

p3beelqe1gbd8tk2qic2hbfej5 9 1

qt4orejugu7hqbd0m8jr7j9d56 9 1

rde6dsetg9tn721f8efl1giug5 9 1

risfv5f45sjkj2k0hsjhb0cnp2 9 1

umbkj3outn2q0u4ogi1nhm0d86 9 1

vulccmpfd9kigtnm76qvekukl1 9 1

0en70q9b8o6bn6bgfkhcf2i8h7 10 1

1u07p8omppjb2oqrtkadvdn2v6 10 1

2mbikr6emk41b87kr46d68fh44 10 1

4pv1c0oi66fe06q2ck66lg3o73 10 1

53tkvqq01r0jv30au4ikr2eb20 10 1

5f6po4ekr3bm57pik3md4tnub1 10 1

5n8u49lvgs7r2pl76msom9s8v7 10 1

5rovl713rmqdn7mo4h7l5ln5n3 10 1

6rubc1hv5phadum9njf847an21 10 1

74bi9bd7o2ukkvfso9m18jou11 10 1

7rj4aa2crif7lsrhson62ron41 10 1

8ejfs86cb24g1udak26v5itop4 10 1

8ncopsrtca2mqqh9qmulkc79t4 10 1

8o1in7idjqhsf9va07uo6g1jk3 10 1

997f013mqp3p2h2qnpm58lcb76 10 1

9d1ol1p49nbnuilumoutrjtcq2 10 1

9m4evllj7tm1q9icls8l5o40m4 10 1

biabpokjnk132lu2keb9nhmtd5 10 1

c7bmbkeriqjfr85sm3vcbth933 10 1

csli5u3ms3rtg8qht0rfihd6q3 10 1

e0s8q070do39qcm87s3mktbfj6 10 1

euc6ho5uqo8vputqo7u0jnihc1 10 1

frj8s3fd1po84uje7sftrh85m5 10 1

gj0e3kmm5tuaasosvnidri1663 10 1

i97epapdrhnh3sisupuju7orb0 10 1

ij381i664lbmd2lrorlts4jnj2 10 1

msdnp47br71gdv11iu1dgnrt43 10 1

nfnkmvflpcukql8pvdsdds4r22 10 1

o4ceqglln1nphd7c6kb4b93923 10 1

oep8758jc2ae7983kml3qqupf2 10 1

p3beelqe1gbd8tk2qic2hbfej5 10 1

qt4orejugu7hqbd0m8jr7j9d56 10 1

rde6dsetg9tn721f8efl1giug5 10 1

risfv5f45sjkj2k0hsjhb0cnp2 10 1

umbkj3outn2q0u4ogi1nhm0d86 10 1

vulccmpfd9kigtnm76qvekukl1 10 1

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 11 1

1u07p8omppjb2oqrtkadvdn2v6 11 1

2mbikr6emk41b87kr46d68fh44 11 0

4pv1c0oi66fe06q2ck66lg3o73 11 0

53tkvqq01r0jv30au4ikr2eb20 11 1

5f6po4ekr3bm57pik3md4tnub1 11 1

5n8u49lvgs7r2pl76msom9s8v7 11 1

5rovl713rmqdn7mo4h7l5ln5n3 11 0

6rubc1hv5phadum9njf847an21 11 1

74bi9bd7o2ukkvfso9m18jou11 11 1

7rj4aa2crif7lsrhson62ron41 11 0

8ejfs86cb24g1udak26v5itop4 11 0

8ncopsrtca2mqqh9qmulkc79t4 11 1

8o1in7idjqhsf9va07uo6g1jk3 11 1

997f013mqp3p2h2qnpm58lcb76 11 1

9d1ol1p49nbnuilumoutrjtcq2 11 1

9m4evllj7tm1q9icls8l5o40m4 11 0

biabpokjnk132lu2keb9nhmtd5 11 1

c7bmbkeriqjfr85sm3vcbth933 11 0

csli5u3ms3rtg8qht0rfihd6q3 11 0

e0s8q070do39qcm87s3mktbfj6 11 0

euc6ho5uqo8vputqo7u0jnihc1 11 1

frj8s3fd1po84uje7sftrh85m5 11 1

gj0e3kmm5tuaasosvnidri1663 11 1

i97epapdrhnh3sisupuju7orb0 11 1

ij381i664lbmd2lrorlts4jnj2 11 1

msdnp47br71gdv11iu1dgnrt43 11 1

nfnkmvflpcukql8pvdsdds4r22 11 0

o4ceqglln1nphd7c6kb4b93923 11 0

oep8758jc2ae7983kml3qqupf2 11 1

p3beelqe1gbd8tk2qic2hbfej5 11 1

qt4orejugu7hqbd0m8jr7j9d56 11 1

rde6dsetg9tn721f8efl1giug5 11 1

risfv5f45sjkj2k0hsjhb0cnp2 11 0

umbkj3outn2q0u4ogi1nhm0d86 11 0

vulccmpfd9kigtnm76qvekukl1 11 1

0en70q9b8o6bn6bgfkhcf2i8h7 12 1

1u07p8omppjb2oqrtkadvdn2v6 12 1

2mbikr6emk41b87kr46d68fh44 12 1

4pv1c0oi66fe06q2ck66lg3o73 12 1

53tkvqq01r0jv30au4ikr2eb20 12 1

5f6po4ekr3bm57pik3md4tnub1 12 1

5n8u49lvgs7r2pl76msom9s8v7 12 1

5rovl713rmqdn7mo4h7l5ln5n3 12 1

6rubc1hv5phadum9njf847an21 12 1

74bi9bd7o2ukkvfso9m18jou11 12 1

7rj4aa2crif7lsrhson62ron41 12 1

8ejfs86cb24g1udak26v5itop4 12 1

8ncopsrtca2mqqh9qmulkc79t4 12 1

8o1in7idjqhsf9va07uo6g1jk3 12 1

997f013mqp3p2h2qnpm58lcb76 12 1

9d1ol1p49nbnuilumoutrjtcq2 12 1

9m4evllj7tm1q9icls8l5o40m4 12 1

biabpokjnk132lu2keb9nhmtd5 12 1

c7bmbkeriqjfr85sm3vcbth933 12 0

csli5u3ms3rtg8qht0rfihd6q3 12 1

e0s8q070do39qcm87s3mktbfj6 12 1

euc6ho5uqo8vputqo7u0jnihc1 12 1

frj8s3fd1po84uje7sftrh85m5 12 1

gj0e3kmm5tuaasosvnidri1663 12 1

i97epapdrhnh3sisupuju7orb0 12 1

ij381i664lbmd2lrorlts4jnj2 12 1

msdnp47br71gdv11iu1dgnrt43 12 1

nfnkmvflpcukql8pvdsdds4r22 12 1

o4ceqglln1nphd7c6kb4b93923 12 1

oep8758jc2ae7983kml3qqupf2 12 1

p3beelqe1gbd8tk2qic2hbfej5 12 1

qt4orejugu7hqbd0m8jr7j9d56 12 1

rde6dsetg9tn721f8efl1giug5 12 1

risfv5f45sjkj2k0hsjhb0cnp2 12 1

umbkj3outn2q0u4ogi1nhm0d86 12 1

vulccmpfd9kigtnm76qvekukl1 12 1
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Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 13 1

1u07p8omppjb2oqrtkadvdn2v6 13 1

2mbikr6emk41b87kr46d68fh44 13 1

4pv1c0oi66fe06q2ck66lg3o73 13 1

53tkvqq01r0jv30au4ikr2eb20 13 1

5f6po4ekr3bm57pik3md4tnub1 13 1

5n8u49lvgs7r2pl76msom9s8v7 13 1

5rovl713rmqdn7mo4h7l5ln5n3 13 1

6rubc1hv5phadum9njf847an21 13 1

74bi9bd7o2ukkvfso9m18jou11 13 1

7rj4aa2crif7lsrhson62ron41 13 1

8ejfs86cb24g1udak26v5itop4 13 1

8ncopsrtca2mqqh9qmulkc79t4 13 1

8o1in7idjqhsf9va07uo6g1jk3 13 1

997f013mqp3p2h2qnpm58lcb76 13 1

9d1ol1p49nbnuilumoutrjtcq2 13 1

9m4evllj7tm1q9icls8l5o40m4 13 1

biabpokjnk132lu2keb9nhmtd5 13 1

c7bmbkeriqjfr85sm3vcbth933 13 1

csli5u3ms3rtg8qht0rfihd6q3 13 1

e0s8q070do39qcm87s3mktbfj6 13 1

euc6ho5uqo8vputqo7u0jnihc1 13 1

frj8s3fd1po84uje7sftrh85m5 13 1

gj0e3kmm5tuaasosvnidri1663 13 1

i97epapdrhnh3sisupuju7orb0 13 1

ij381i664lbmd2lrorlts4jnj2 13 1

msdnp47br71gdv11iu1dgnrt43 13 1

nfnkmvflpcukql8pvdsdds4r22 13 1

o4ceqglln1nphd7c6kb4b93923 13 1

oep8758jc2ae7983kml3qqupf2 13 1

p3beelqe1gbd8tk2qic2hbfej5 13 1

qt4orejugu7hqbd0m8jr7j9d56 13 1

rde6dsetg9tn721f8efl1giug5 13 1

risfv5f45sjkj2k0hsjhb0cnp2 13 1

umbkj3outn2q0u4ogi1nhm0d86 13 1

vulccmpfd9kigtnm76qvekukl1 13 1

0en70q9b8o6bn6bgfkhcf2i8h7 14 1

1u07p8omppjb2oqrtkadvdn2v6 14 0

2mbikr6emk41b87kr46d68fh44 14 1

4pv1c0oi66fe06q2ck66lg3o73 14 1

53tkvqq01r0jv30au4ikr2eb20 14 1

5f6po4ekr3bm57pik3md4tnub1 14 1

5n8u49lvgs7r2pl76msom9s8v7 14 1

5rovl713rmqdn7mo4h7l5ln5n3 14 1

6rubc1hv5phadum9njf847an21 14 1

74bi9bd7o2ukkvfso9m18jou11 14 1

7rj4aa2crif7lsrhson62ron41 14 1

8ejfs86cb24g1udak26v5itop4 14 1

8ncopsrtca2mqqh9qmulkc79t4 14 1

8o1in7idjqhsf9va07uo6g1jk3 14 1

997f013mqp3p2h2qnpm58lcb76 14 1

9d1ol1p49nbnuilumoutrjtcq2 14 1

9m4evllj7tm1q9icls8l5o40m4 14 1

biabpokjnk132lu2keb9nhmtd5 14 1

c7bmbkeriqjfr85sm3vcbth933 14 0

csli5u3ms3rtg8qht0rfihd6q3 14 1

e0s8q070do39qcm87s3mktbfj6 14 1

euc6ho5uqo8vputqo7u0jnihc1 14 1

frj8s3fd1po84uje7sftrh85m5 14 1

gj0e3kmm5tuaasosvnidri1663 14 1

i97epapdrhnh3sisupuju7orb0 14 0

ij381i664lbmd2lrorlts4jnj2 14 1

msdnp47br71gdv11iu1dgnrt43 14 0

nfnkmvflpcukql8pvdsdds4r22 14 1

o4ceqglln1nphd7c6kb4b93923 14 0

oep8758jc2ae7983kml3qqupf2 14 1

p3beelqe1gbd8tk2qic2hbfej5 14 1

qt4orejugu7hqbd0m8jr7j9d56 14 1

rde6dsetg9tn721f8efl1giug5 14 1

risfv5f45sjkj2k0hsjhb0cnp2 14 1

umbkj3outn2q0u4ogi1nhm0d86 14 1

vulccmpfd9kigtnm76qvekukl1 14 1

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 15 1

1u07p8omppjb2oqrtkadvdn2v6 15 1

2mbikr6emk41b87kr46d68fh44 15 1

4pv1c0oi66fe06q2ck66lg3o73 15 1

53tkvqq01r0jv30au4ikr2eb20 15 1

5f6po4ekr3bm57pik3md4tnub1 15 1

5n8u49lvgs7r2pl76msom9s8v7 15 1

5rovl713rmqdn7mo4h7l5ln5n3 15 1

6rubc1hv5phadum9njf847an21 15 1

74bi9bd7o2ukkvfso9m18jou11 15 1

7rj4aa2crif7lsrhson62ron41 15 1

8ejfs86cb24g1udak26v5itop4 15 1

8ncopsrtca2mqqh9qmulkc79t4 15 1

8o1in7idjqhsf9va07uo6g1jk3 15 1

997f013mqp3p2h2qnpm58lcb76 15 1

9d1ol1p49nbnuilumoutrjtcq2 15 1

9m4evllj7tm1q9icls8l5o40m4 15 1

biabpokjnk132lu2keb9nhmtd5 15 1

c7bmbkeriqjfr85sm3vcbth933 15 1

csli5u3ms3rtg8qht0rfihd6q3 15 1

e0s8q070do39qcm87s3mktbfj6 15 1

euc6ho5uqo8vputqo7u0jnihc1 15 1

frj8s3fd1po84uje7sftrh85m5 15 1

gj0e3kmm5tuaasosvnidri1663 15 1

i97epapdrhnh3sisupuju7orb0 15 1

ij381i664lbmd2lrorlts4jnj2 15 1

msdnp47br71gdv11iu1dgnrt43 15 1

nfnkmvflpcukql8pvdsdds4r22 15 1

o4ceqglln1nphd7c6kb4b93923 15 1

oep8758jc2ae7983kml3qqupf2 15 1

p3beelqe1gbd8tk2qic2hbfej5 15 1

qt4orejugu7hqbd0m8jr7j9d56 15 1

rde6dsetg9tn721f8efl1giug5 15 1

risfv5f45sjkj2k0hsjhb0cnp2 15 1

umbkj3outn2q0u4ogi1nhm0d86 15 1

vulccmpfd9kigtnm76qvekukl1 15 1

0en70q9b8o6bn6bgfkhcf2i8h7 16 0

1u07p8omppjb2oqrtkadvdn2v6 16 1

2mbikr6emk41b87kr46d68fh44 16 1

4pv1c0oi66fe06q2ck66lg3o73 16 1

53tkvqq01r0jv30au4ikr2eb20 16 1

5f6po4ekr3bm57pik3md4tnub1 16 1

5n8u49lvgs7r2pl76msom9s8v7 16 1

5rovl713rmqdn7mo4h7l5ln5n3 16 1

6rubc1hv5phadum9njf847an21 16 1

74bi9bd7o2ukkvfso9m18jou11 16 1

7rj4aa2crif7lsrhson62ron41 16 1

8ejfs86cb24g1udak26v5itop4 16 0

8ncopsrtca2mqqh9qmulkc79t4 16 1

8o1in7idjqhsf9va07uo6g1jk3 16 1

997f013mqp3p2h2qnpm58lcb76 16 1

9d1ol1p49nbnuilumoutrjtcq2 16 1

9m4evllj7tm1q9icls8l5o40m4 16 0

biabpokjnk132lu2keb9nhmtd5 16 1

c7bmbkeriqjfr85sm3vcbth933 16 1

csli5u3ms3rtg8qht0rfihd6q3 16 0

e0s8q070do39qcm87s3mktbfj6 16 1

euc6ho5uqo8vputqo7u0jnihc1 16 1

frj8s3fd1po84uje7sftrh85m5 16 1

gj0e3kmm5tuaasosvnidri1663 16 1

i97epapdrhnh3sisupuju7orb0 16 1

ij381i664lbmd2lrorlts4jnj2 16 1

msdnp47br71gdv11iu1dgnrt43 16 1

nfnkmvflpcukql8pvdsdds4r22 16 1

o4ceqglln1nphd7c6kb4b93923 16 1

oep8758jc2ae7983kml3qqupf2 16 1

p3beelqe1gbd8tk2qic2hbfej5 16 1

qt4orejugu7hqbd0m8jr7j9d56 16 1

rde6dsetg9tn721f8efl1giug5 16 1

risfv5f45sjkj2k0hsjhb0cnp2 16 1

umbkj3outn2q0u4ogi1nhm0d86 16 1

vulccmpfd9kigtnm76qvekukl1 16 1

Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 17 1

1u07p8omppjb2oqrtkadvdn2v6 17 1

2mbikr6emk41b87kr46d68fh44 17 1

4pv1c0oi66fe06q2ck66lg3o73 17 1

53tkvqq01r0jv30au4ikr2eb20 17 1

5f6po4ekr3bm57pik3md4tnub1 17 1

5n8u49lvgs7r2pl76msom9s8v7 17 1

5rovl713rmqdn7mo4h7l5ln5n3 17 1

6rubc1hv5phadum9njf847an21 17 1

74bi9bd7o2ukkvfso9m18jou11 17 1

7rj4aa2crif7lsrhson62ron41 17 1

8ejfs86cb24g1udak26v5itop4 17 1

8ncopsrtca2mqqh9qmulkc79t4 17 1

8o1in7idjqhsf9va07uo6g1jk3 17 0

997f013mqp3p2h2qnpm58lcb76 17 1

9d1ol1p49nbnuilumoutrjtcq2 17 1

9m4evllj7tm1q9icls8l5o40m4 17 1

biabpokjnk132lu2keb9nhmtd5 17 1

c7bmbkeriqjfr85sm3vcbth933 17 1

csli5u3ms3rtg8qht0rfihd6q3 17 1

e0s8q070do39qcm87s3mktbfj6 17 1

euc6ho5uqo8vputqo7u0jnihc1 17 1

frj8s3fd1po84uje7sftrh85m5 17 1

gj0e3kmm5tuaasosvnidri1663 17 1

i97epapdrhnh3sisupuju7orb0 17 1

ij381i664lbmd2lrorlts4jnj2 17 1

msdnp47br71gdv11iu1dgnrt43 17 1

nfnkmvflpcukql8pvdsdds4r22 17 1

o4ceqglln1nphd7c6kb4b93923 17 1

oep8758jc2ae7983kml3qqupf2 17 1

p3beelqe1gbd8tk2qic2hbfej5 17 1

qt4orejugu7hqbd0m8jr7j9d56 17 1

rde6dsetg9tn721f8efl1giug5 17 1

risfv5f45sjkj2k0hsjhb0cnp2 17 1

umbkj3outn2q0u4ogi1nhm0d86 17 1

vulccmpfd9kigtnm76qvekukl1 17 1

0en70q9b8o6bn6bgfkhcf2i8h7 18 1

1u07p8omppjb2oqrtkadvdn2v6 18 1

2mbikr6emk41b87kr46d68fh44 18 1

4pv1c0oi66fe06q2ck66lg3o73 18 1

53tkvqq01r0jv30au4ikr2eb20 18 1

5f6po4ekr3bm57pik3md4tnub1 18 1

5n8u49lvgs7r2pl76msom9s8v7 18 1

5rovl713rmqdn7mo4h7l5ln5n3 18 1

6rubc1hv5phadum9njf847an21 18 1

74bi9bd7o2ukkvfso9m18jou11 18 1

7rj4aa2crif7lsrhson62ron41 18 1

8ejfs86cb24g1udak26v5itop4 18 1

8ncopsrtca2mqqh9qmulkc79t4 18 1

8o1in7idjqhsf9va07uo6g1jk3 18 1

997f013mqp3p2h2qnpm58lcb76 18 1

9d1ol1p49nbnuilumoutrjtcq2 18 1

9m4evllj7tm1q9icls8l5o40m4 18 1

biabpokjnk132lu2keb9nhmtd5 18 1

c7bmbkeriqjfr85sm3vcbth933 18 1

csli5u3ms3rtg8qht0rfihd6q3 18 1

e0s8q070do39qcm87s3mktbfj6 18 1

euc6ho5uqo8vputqo7u0jnihc1 18 1

frj8s3fd1po84uje7sftrh85m5 18 1

gj0e3kmm5tuaasosvnidri1663 18 1

i97epapdrhnh3sisupuju7orb0 18 1

ij381i664lbmd2lrorlts4jnj2 18 1

msdnp47br71gdv11iu1dgnrt43 18 1

nfnkmvflpcukql8pvdsdds4r22 18 1

o4ceqglln1nphd7c6kb4b93923 18 1

oep8758jc2ae7983kml3qqupf2 18 1

p3beelqe1gbd8tk2qic2hbfej5 18 1

qt4orejugu7hqbd0m8jr7j9d56 18 1

rde6dsetg9tn721f8efl1giug5 18 1

risfv5f45sjkj2k0hsjhb0cnp2 18 1

umbkj3outn2q0u4ogi1nhm0d86 18 1

vulccmpfd9kigtnm76qvekukl1 18 1
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Session Question Correct

0en70q9b8o6bn6bgfkhcf2i8h7 19 1

1u07p8omppjb2oqrtkadvdn2v6 19 1

2mbikr6emk41b87kr46d68fh44 19 1

4pv1c0oi66fe06q2ck66lg3o73 19 1

53tkvqq01r0jv30au4ikr2eb20 19 1

5f6po4ekr3bm57pik3md4tnub1 19 1

5n8u49lvgs7r2pl76msom9s8v7 19 1

5rovl713rmqdn7mo4h7l5ln5n3 19 1

6rubc1hv5phadum9njf847an21 19 1

74bi9bd7o2ukkvfso9m18jou11 19 1

7rj4aa2crif7lsrhson62ron41 19 1

8ejfs86cb24g1udak26v5itop4 19 1

8ncopsrtca2mqqh9qmulkc79t4 19 1

8o1in7idjqhsf9va07uo6g1jk3 19 1

997f013mqp3p2h2qnpm58lcb76 19 1

9d1ol1p49nbnuilumoutrjtcq2 19 1

9m4evllj7tm1q9icls8l5o40m4 19 1

biabpokjnk132lu2keb9nhmtd5 19 1

c7bmbkeriqjfr85sm3vcbth933 19 1

csli5u3ms3rtg8qht0rfihd6q3 19 1

e0s8q070do39qcm87s3mktbfj6 19 1

euc6ho5uqo8vputqo7u0jnihc1 19 1

frj8s3fd1po84uje7sftrh85m5 19 1

gj0e3kmm5tuaasosvnidri1663 19 1
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