NEURAL NETWORK EVALUATION

Neural Network Evaluation

Michael Gircys

Abstract—The efforts outlined in this paper attempt to repli-
cate and evaluate the classification abilities feed-forward neural
networks on pair of varyingly difficult datasets. Various neural
network configurations are explored, with a focus on comparing
and contrasting classification effectiveness between key learning
rules, tunable rates, activations functions, and validation meth-
ods.

I. INTRODUCTION

HE PURPOSE of these experiments was to evaluate

the classification performance of a set of common feed-
forward neural network variants across a number of config-
uration changes. Each of a pair of data sets from the UCI
Machine Learning Repository are used to train the neural
network instances across a spectrum of tunable configuration
rates. Additional changes will be evaluated on the variants and
data sets for different activation functions, validation methods,
and network topologies.

This report will continue with a review of feed-forward
neural networks, the variants employed, and details of
the configuration parameters considered for performance
evaluation. Following the neural network review will be an
overview and description of the analytical methods used to
compare classification performance, and the tools used to
evaluate confidence in these comparisons. Descriptions of each
individual experiment will then be provided, accompanied
with the corresponding results, and discussion points found
from the data. Finally, we will summarize the results found
and conclude the experiments.

As neural networks are well suited to classification tasks,
and the focus of our evaluation is performance on classifica-
tions, we will require training data with some known properties
that will allow us to observe a performance baseline. The data
sets used to evaluate the networks were obtained from the
UCI Machine Learning Repository [2], and include the Iris
Plant Type [1] patterns set and the Breast Cancer Wisconsin
(Diagnostic) [6] set. These sets are ideal for classification, and
are accompanied by attribute and class information, as well as
known solvers where available.

The first set - Iris Plant Type [1] - provides 150 samples
with 3 classifications (one linearly separable) from 4 real-type
attributes. Iris plant subspecies is to be determined from 4
measurable metrics of the flower. The data provides a simple
domain for classification, and should be a suitable test set
to generate baseline configurations. We may expect quicker
convergence, and a preference for simpler topologies. One
experiment performed involves determining the effectiveness
of holdout folds on generalisation ability, and may benefit from
a larger amount of samples than was provided. To this effect,

Fig. 1. Iris Plant Type Data Definition
Iris Plant Type

Attributes Sepal length (cm)
Sepal width (cm)
Petal length (cm)
Petal width (cm)
Classifications Iris Setosa

Iris Versicolour
Iris Virginica

Fig. 2. Breast Cancer Wisconsin (Diagnostic) Data Definition

Breast Cancer Wisconsin (Diagnostic)

Attributes Clump Thickness 1-10
Uniformity of Cell Size 1-10
Uniformity of Cell Shape 1 - 10
Marginal Adhesion 1-10
Single Epithelial Cell Size 1 - 10
Bare Nuclei 1-10
Bland Chromatin 1-10
Normal Nucleoli 1-10
Mitoses 1-10

Classifications Benign

Malignant

all experiments make use of a data set which triples the count
of original samples by applying an inverse normal distribution
on all values, with the original value as the mean and a 0.1
variance.

The Breast Cancer Wisconsin (Diagnostic) [6] set provides a
slight increase in classification difficulty. We are provided with
699 samples with 2 classifications from 10 real-type attributes.
A sample is determined to be benign or malignant based on
measured cell properties and behaviours. While the number
of classifications has been reduced, it does not appear that
any solution has been previously found which was capable of
perfectly separating the classes. A more complex set of data
relating to properties of 3 specific cells per sample is available,
but is outside of the scope of these experiments.

II. NEURAL NETWORKS

A neural network is a supervised machine learning al-
gorithm ideal for classification problems. A directed graph
is produced by generating layers of nodes, and providing
a weight to each edge connecting them. Each node weighs
and sums the data passed to it before evaluating the result
on its node-specific activator function. This function output
can then be passed to any nodes which can be visited from
the current node. By providing attribute samples with known,

NEURAL NETWORK EVALUATION

expected results, the network can self-adjust and attempt to
minimize produced errors. The neural networks employed for
the experiments in this report are feed-forward neural network
variants.

Feed-forward neural networks constitute one of the simpler
families of neural network topologies, where the data between
each layer of neurons is directed in a single direction - from
input layer to output layer. The neurons within each layer of
the network are typically fully connected to every neuron in its
neighbouring layers. Extending from the simplest perceptron
topology, a feed-forward neural layer may include multiple
hidden layers, each with a variable amount of hidden nodes.
By permitting additional layers and intermediate nodes, we
are able to generate increasingly complex function composi-
tions, which allows us to produce correspondingly complex
classification logic.

A. Variant: BackProp

Neural network backwards propagation of error (or back-
propagation, or BackProp) is the fundamental method of
distributing output layer error measures to the inner neurons of
the network. In training with back-propagation, we are able to
compute the actual output of the model with the associated
input and compare to the expected output. The difference
between expected and actual output can provide the error
value for each neuron in the output layer. We are then able
to iteratively assign error values to the neurons in each layer
moving backwards. Each neuron is assigned its error of by
summing the errors in all the neurons in the layer ahead of it,
factored by the amount its output contributed to those neurons
(weight).

With each neuron assigned an error value, a determination
of how much each weight within the neuron must change
can be made. For each weight, the derivative of the activation
function can be used in conjunction with the total neuron error,
total weighted neuron input, and individual input value (that
value which gets adjusted by the current weight) to find the
error gradient for the weight. This gradient reflects the amount
that the error will change based on changes to the weight,
assuming all other weights are equal. The calculation of the
neuron errors and weight gradients is outline in Algorithm 1.
The weights are then updated by this gradient (factored by the
tunable learning rate), and momentum (, the amount of change
from the previous iteration, discussed below).

As the other variants employed require a batch learning
approach, the variant of BackProp that was used for analysis
within this report also made us of a batch learning methodol-
ogy. The changes from the traditional BackProp method are
minimal; the gradient value is simply averaged across all of the
training values, and the final weight update is performed at the
end of each epoch. This results in less error noise, and ensures
that each sample is evaluated from the same state within an
epoch instead of being influenced by the samples evaluated
before it. The final BackProp batch algorithm is outline in
Algorithm 2.

Algorithm 1 Error Gradient Calculation

weightllayer, neuron, weight)
statellayer, neuron)
error[layer, neuron]

for all {inputs, expected} € data_samples do
state <= Evaluate(inputs)
outputl <= stateoutputiayer

{Move backwards and determine proportional error}
for i = 0 to |outputs| do
ETTOT outputlayer,i <= expected; — output;
end for
for | = outputlayer — 1 to inputlayer + 1 do
for n =1 to |layer.neurons| where layer =1 do
erroryy <= Y., errorip1,w X weighti 1 nw
{inputs provided which produced the error}

sum <=y state;_q ., X weighty , v

for w = 1 to |neuron.weights| where neuron = n

do
gradient; ., << % X errory, X
state;_1

end for

end for
end for
end for

Algorithm 2 BackProp

n {learning rate}
¢ {momentum rate}

for all {i,w,m} € weights do
1 {weight index}
w {weight value}
m {momentum; previous weight change}
E, < compute_gradients(i)
B =~ %, (1) = - 3, 00, Bglea,
{sum of gradients for a weight across all batch samples}

A <=nEy+(m
w<w+ A
m< A

end for

B. Variant: RProp

RProp is a neural net batch learning method dependant
on the same error gradient calculation as vanilla back-
propagation. However, while the weight update method is
dependant on this error calculation, it uses only the sign of
the gradient, not the magnitude. Instead of relying on value
of the error gradient to determine the weight change delta,
RProp keeps track of an update value for each weight, which
grows or shrinks by empirically established values based on
the error gradient maintaining its current sign. It was found
that a growth rate of 1.2, and shrink rate of 0.5 gave optimal

NEURAL NETWORK EVALUATION

results [5]. The update value is typically also clamped to
[0.000001,50] for similar motivations as moving away from
gradient magnitude [5]. Algorithm 3 displays the method of
weight and update value adjustment in RProp.

RProp has been found to perform well for many applica-
tions, and converges more quickly that vanilla BackProp. By
maintaining its own update value per weight, learning rates and
momentum rates become redundant. The method in which the
update value is adjusted appears similar to a high momentum
BackProp model. This has the benefit of allowing for operation
without the need for additional parameter tuning, but despite
the momentum-like behaviour, tends to converge to the first
minima.

Algorithm 3 RProp

nt < 1.2

n- < 0.5

Apaz < 50.0
Apin <= 0.000001

for all {i,w,dw,d, E;_1} € weights do
i {weight index }
w {weight value}
dw {previous weight change, signed}
d {weight delta}
E,_; {previous gradient}
E, <= compute_gradients(i)
B ==Y, 28 (t) = - 3,6, 25 e,
{sum of gradients for a weight across all batch samples}

if sign(F;_1) = 0 then
dw < d x sign(E})
else if sign(E;_1) = sign(E;) then
d <= min(d x nt, Apaz)
dw < d x sign(FE})
else {sign(E;_1) # sign(F:)}
d <= mazx(d xn~, Apmin)
E <=0
end if

w <= w— dw
Ei 1< Ey
end for

C. Variant: Delta-Bar-Delta

The Delta-Bar-Delta (DBD) algorithm appears not dissimi-
lar to a sub-variant of RProp. Instead of mimicking momentum
by adjusting the magnitude of a weight delta, we instead
directly shrink or grow a dynamic learning rate.

Each weight value is updated in a similar manner to that
of traditional BackProp; weights are incremented by the error
gradient value, factored by a learning rate. However, we must
first update the learning rate that will be used. Based on
whether or not the sign of the error gradient has changed, the
learning rate associated with a given weight grows or decays.
We can increment the learning rate by a fixed growth value K,

or decrement the rate by a factor of (1 — D) for decay value
D in (0,1). This provides a sort of meta-learning adjustment,
increasing learning when it appears to be improving the model,
and decreasing learning when it begins to go astray [4].
Tunable options may include the initial learning rate, growth
value, and decay percentage.

D. Other Configurables

A number of other attributes and learning rules can be
configured, and may provide measurable performance gains
or losses. This report will experiment with learning rate,
momentum rate, hidden layer and node set-up, activation
function selection, and holdout methods.

1) Learning Rate: The neural network variants update the
weights associated with each nodes inputs based on an amount
of error found to come from the given node. However, a weight
value which causes error for one input may be required for
providing a correct output for some other input. Continuous
training may lead to oscillation of weights based on the
competition produced from the two inputs. To help allow the
network to converge, a learning rate may be employed, scaling
back the amount of effect each update iteration will have on
the node weights. The value of the learning rate is expected
to be in (0, 1], and is a tunable parameter with which we will
experiment.

2) Momentum Rate: Conversely, to avoid early convergence
on local extrema, the concept of momentum with a tunable
momentum rate can be used. By tracking the change in each
weight from the previous iteration, this amount of change
can be applied to the current iteration as well. This allows
a consistently improving weight to continue to update in the
same direction despite a minor amount of iterations where
the weight would otherwise be adjusted opposite its last
direction. The hope is that this momentum value will allow the
weight to pass local error minima, where a stronger maxima
will sufficiently influence the momentum to change direction.
Similar to the learning rate, a tunable [0, 1] momentum rate
interval will undergo experimentation.

3) Hidden Nodes: A simple neural net perceptron has
only its input and output layers to train. The feed-forward
networks used in these experiments permit additional layers
which should be considered hidden from any program using
the implementation. With additional nodes between the input
and output layers, an increasingly complex function compo-
sition can be produced, potentially allowing correspondingly
intricate classification logic. The number of additional layers
and the number of nodes within each of these layers may be
configured at initialization time, likely with great influence on
classification runtime performance and accuracy.

4) Activation Function: While evaluating an input within
a neural network, one of the critical steps performed in each
neuron is to pass the weighted sum of its inputs through an
activation function. Traditionally, this function is the logistic
(or soft-step, or sigmoid) function, producing a (0, 1) output
to the next node. However, other functions can also be used
as an activator, for a single neuron, or the entire network.
In comparison to the identity function, other functions were

NEURAL NETWORK EVALUATION

found to be interesting based on how they scaled and smoothed
inputs. As the neural network variants employed in the exper-
iments are all dependant and error gradient optimization, one
key requirement for the activation functions is that there must
exist a 1st order derivative for the activator. While not required,
it was found that non-linear [3], monotonic [11], smooth
[15] activators seemed to perform most reliably. Within our
planned experiments, we will evaluate how a neural network
completely configured with the TanH function (giving (—1, 1))
performs in comparison to the sigmoid function.

5) Validation Techniques: A concern with supervised learn-
ing methods is over-fitting the training data. Over-fitting occurs
when the model begins to conform to specific data samples
instead of providing a more general abstraction of the struc-
tures and correlations within the data. Where no effort is made
to control this, models may exhibit excellent performance on
the training data, but fail to provide proper results on new
data samples. One common remedy is to partition the data
samples into training and validation sets, where training is on
only performed on the training data set. The validation set
can then be evaluated, where a drastically lower score would
suggest over-fitting. If over-fitting is detected in the way, it
may be sufficient to terminate the run early before the model
is further compromised, however noise can make this difficult
to reliably detect [8].

An alternate method of maintaining generalization may be
to further abstract the data partitioning into a larger amount
of partitions, known as folds. Multiple instances of the neural
net can be created, where each train on all but one of the data
sets. The remaining data set is used for validation. These sets
could have been previously partitioned into a global testing
set for a more accurate test performance. The best performing
of the folds can be used for final validation and testing. This
would require a suitably large original data set to ensure a
sufficient count of samples in folds’ validation sets. It was for
this reason that the Iris data was tripled by adding noise to
the original samples.

III. METHODS OF ANALYSIS

Within the analysis of our experiments, we will measure
performance through the means of the MSE across the testing
sample set. Mean Square Error (MSE) provides an inter-
pretable measure of error distance across numerous sample
dimensions, and has useful known properties. MSE happens
to be an approximation for the error variance across the testing
set, which will assist in a number of the statistical tests
that we will perform [13]. When displaying performance of
experiment configurations which span multiple runs, the mean
of these values across all the runs will be used.

To further evaluate and measure the strength of any com-
parisons, a number of statistical displays and tests will be
used. We will briefly discuss confusion matrices, confidence
intervals, T-tests, and ANOVA measures.

A. Confusion Matrix

While generally quite useful and easy to interpret, averages
and other aggregates based on MSE may not be the most

accurate display of true classification performance. The output
values for a successful (or failed) classification should be
found after a threshold to above or below 0.5 (ie. more
confidence that an input gives one class than not). This
suggests that a system with a higher MSE may classify more
accurately than a system with a lower MSE, so long as the first
system has values closer to - though still on the correct side
of - the appropriate thresholds. This may fundamentally be
unsolvable, as any data set may have noise within the measured
attributes, and it is not guaranteed that all classifications will
be linearly separable. Without the use of validation measures,
any classification with extremely low training error should be
viewed with suspicion of over-fitting.

One way that we can attempt to avoid the actual classi-
fication error vs mean square error ambiguity is to employ
confusion matrices. In supervised learning methods, where
the expected outputs are known, it should be trivial to track
whether or not an input gives a certain class, and whether
or not is was expected to give that class. Where an input is
found to have the class that it should, or doesn’t have a class
which it shouldn’t, we have a true positive or true negative
respectively. Conversely, by having a class which it shouldn’t,
or not having a class that it should, the input provides a
false positive or false negative respectively. By tracking these
true/false positives/negatives, we can find interesting derived
error measurements.

The accuracy of a classification, measuring how often the
classifier is actually correct, can be found from (TP +
TN)/Total. Its opposite, the error rate, is simply (FP +
FN)/Total. With additional information from the input and
output values, The true positive rate (T'P/T P,,4.), and false
positive rate (FP/TNp,q.) can be determined, giving how
often the classifier gives a class when the sample should give
the class, and how often the classifier gives a class when the
sample shouldn’t give the class. In a similar manner, specificity
refers to how often the classifier withholds a class when
it should, and precision refers to the percentage of correct
positive predications. Where the threshold can be varied, an
ROC curve plots the true positive rate against the false positive
rate as the threshold is scaled. [16]

For classifications with more than two possible classes,
the confusion matrix can be extended to track all possible
predicated classifications for all actual classifications. For the
purpose of determining specificity within activation function
bias, we can group all possible classification in the same binary
confusion matrix - correctly or incorrectly assigned or didn’t
assign a particular classification. The experiments in this test
assume a fixed threshold of 0.5, over or under which a class
will or will not be assigned.

B. Confidence Interval

Confidence intervals and confidence intervals go hand-in-
hand. A confidence interval of 95% would suggest that in
repeating an experiment, we should find our resultant samples
should fall within our original range for 95% of our repeated
tests. This original range is our confidence interval. Thus, in
some given example where there exists 95% confidence of

NEURAL NETWORK EVALUATION

a value being between x and y, that there is a 95% chance
(confidence level) that the value will indeed be within [z, y]
(confidence interval).

Without knowing additional information about the sample
population, we assume that it follows a t-distribution. Proper-
ties known about this t-distribution allow us to determine an
interval about a mean, for given sample attributes and a desired
confidence. For convenience, t-distribution is sufficiently well
studied, and lookup tables are available. The formulae below
[10] permits us to determine such a confidence range with use
of a lookup table:

dy = |samples| — 1
1
o= 5(1 — con flevel)

t = tiable (df7 O[)

Osamples

V/|samples|

d=1tx

Confinter'ual = [Msamples - d7 Hsamples + d]

We would expect, with a given confidence level, that future
repetitions of a given experiment will provides values which
lie within this found range.

C. T-Test

The unnamed Student’s T-test is able to determine the
confidence that a pair of samples have a different mean. It may
be seemingly apparent through visual analysis that some given
group has a notably different performance than some other
group across a number of runs. However, this is not always
the case. These visual interpretations may only be based on
mean performance, where a high deviation may suggest that
the way in which the two distributions overlap is not as clear.
An insufficient sample size could also remove confidence in
any comparative result. A T-test is able to provide a confidence
metric for the likelihood of distribution overlap based on mean,
standard deviation, and sample size.

The calculations within a t-test are similar to that of signal-
to-noise ratio evaluation. We must find the difference in the
two sets’ means in proportion to the two groups’ variability.

f— |1ta — pip]
e e}
ng ' np

dj = (nq — 1)+ (n — 1)

With the t-value and degrees of freedom calculated as above,
the same t-distribution table used to determine confidence
intervals can be referenced to determine significance value of
the samples having different means [9].

D. ANOVA

A T-test is useful for comparison of two distributions.
However, for comparison of an arbitrary number of sample
sets, a one-way analysis of variance (ANOVA) test should be
used first. An ANOVA can be used to determine if there is
any significance between the means of multiple experimental
groups. One advantage in the use of an ANOVA over multiple
T-tests is the reduction of error; each T-test inherently induces
a small chance of suggesting a false positive, which stacks
cumulatively with each additional testing using its source data.
A one-way ANOVA on only two distributions is identical to
the confidence measure obtained from a T-test [9].

An ANOVA does require a number of assumptions to
be made, namely that dependant variables are normally dis-
tributed in each group, the sample variances in each group
are roughly equal, and observations are independent [14]. The
one-way ANOVA is considered to be relatively robust against
non-normal distributions, though particularly flat distributions
should be remedied through transforms before use in the
test. The ANOVA determines and evaluates an F-test statistic
against a known table of significance values for the hypothesis
that the the sample distributions are equal. To find the F-
statistic, we can apply the following formula:

explained variance

unexplained variance

ni(pi — p)?

F=%,_
MR

Generalizing from the one-way ANOVA, a two-way anova
can be used to compare the effect of multiple variables on
resultant distributions. Where the one-way ANOVA tests the
hypothesis that the two distributions are equal across all
measures of a variable, the two-way ANOVA must also test
that the distributions are equal across all measures of the
second variable, and optionally that the two variables are
independent.

IV. RESULTS AND DISCUSSION

The base configuration that will be used in the experiments,
unless otherwise noted, are listed in Table 1. These configura-
tion parameters were determined in part through best practices,
and from the initial experiments on the BackProp learning and
momentum rates. While a run count of 6 could be increased
for additional confidence, concessions were originally made
to accommodate for practical run time - particularly in the
case of the Breast Cancer Wisconsin (Diagnostic) data set.
The limit on the number of Epochs was also set with a
consideration for run time limitations. An implementation
problem resulted in a substantially increased runtime while
processing the cancer data set, and while the problem was
eventually corrected and the experiment re-run, the previous
epoch and run count is maintained for consistency. This count
appeared to be generally suitable to display most convergence
behaviours. Where explicitly required, the epoch limit has been
increased and noted in the experimental parameters.

NEURAL NETWORK EVALUATION

TABLE I
EXPERIMENTAL BASELINE CONFIGURATION

Parameter Iris Cancer
Runs 6 6
Epochs 500 500
Topology 4-4-3 9-9-2
Activation Function | Sigmoid | Sigmoid
Learning Rate 0.6 0.8
Momentum Rate 0.3 0.3
Training Samples 70% 70%
Testing Samples 30% 30%
Holdout Folds 1 1

A. Variant: BackProp

The following experiments evaluate BackProp performance
from tunable configuration changes and use of the original
BackProp learning method in batch mode.

TABLE II
EXPERIMENTAL CONFIGURATION - BACKPROP RATES

Parameter | Iris | Cancer
Runs 10 10

Group | Learning Rate Momentum Rate
01 0.2 0.0
02 0.4 0.0
03 0.6 0.0
04 0.8 0.0
05 0.2 0.3
06 0.4 0.3
07 0.6 0.3
08 0.8 0.3
09 0.2 0.6
10 0.4 0.6
11 0.6 0.6
12 0.8 0.6

TABLE III
Two-WAY ANOVA SUMMARY - BACKPROP RATES - IRIS
Source | SS dy MS F P
Momentum Rate | 0.02 2 0.01 4.15 0.0183
Learning Rate | 0.02 3 0.01 277 0.0451

Interaction | 0.02 6 0 1.38 0.2292

Error | 026 108 0
Total | 0.32 119
TABLE IV

Two-WAY ANOVA SUMMARY - BACKPROP RATES - CANCER

Source | SS dy MS F P

Momentum Rate | 0.00 2 0 0 1
Learning Rate | 0.00 3 0 0 1
Interaction | 0.01 6 0 4.5 0.0004
Error | 0.04 108 0
Total | 0.05 119

1) Rates: In evaluating the effect of the rates for a neural
network operating on the iris data set, a two-way ANOVA
shows some notable relation between performance and learn-
ing rate, momentum, and a combination of the two. A low
learning rate appeared to have performance plateau at a higher
level of error, though with that low learning rate, performance
increased slightly with an elevated momentum rate. A marginal
improvement was seen from the group with the highest learn-
ing rate, though the best results for the set were had from

combinations of mid level learning and momentum rates. The
optimal pairing for the set was had with a learning rate of 0.6,
and a momentum rate of 0.3. Running a t-test on this optimal
configuration against the other configurations gives a P value
of 0.052, just reaching the 95% confidence level, suggesting
that the ideal configuration is statistically significant.

The two-way ANOVA on the cancer set shows that after 500
epochs, there was not a particularly strong relation between
performance and learning rate nor between performance and
momentum rate as applied to the set. However, there was a
definite effect on performance within the interaction of the two
rates. In comparison to the iris set, performance appeared to
plateau at a more consistent level, though different speeds of
convergence can be seen around epoch 100.

2) Hidden Nodes: A critical experiment that was performed
measured the performance change after adjusting the network
topology. For the cancer and iris data sets, the baseline
configuration relies on a single hidden layer, where the number
of nodes is identical to the number of input nodes. To contrast
this, we evaluate networks where the number of hidden nodes
is halved or doubled. Additionally, instead of just doubling
the number of hidden nodes in a single layer, an additional
experiment is performed where the entire hidden layer is
duplicated.

TABLE V
EXPERIMENTAL CONFIGURATION - BACKPROP TOPOLOGIES
Group | Iris Set | Cancer Set
01 4-2-3 9-5-2
02 4-4-3 9-9-2
03 | 4-4-4-3 9-9-9-2
04 4-8-3 9-18-2
TABLE VI
ONE-WAY ANOVA SUMMARY - BACKPROP TOPOLOGY - IRIS
Source | SS dy MS F P
Treatment | 0.043 3 0.014 13.0 <0.0001
Error | 0.022 20 0.001
Total | 0.066 23
TABLE VII
ONE-WAY ANOVA SUMMARY - BACKPROP TOPOLOGY - CANCER
Source | SS dy MS F P
Treatment | 0.007 3 0.002 6.87 0.0023
Error | 0.007 20 0.001
Total | 0.013 23

The iris set’s 4-4-4-3 neural network appeared to improve
more rapidly than the 4-2-3 or 4-4-3, but then quickly
plateaued at around epoch 200, as seen in figure 5. However,
The 4-4-3 network appeared to still be gradually improving
after 500 epochs. A one-way ANOVA confirms significant
relation in performance to topology. A clear victor, the 4-
8-3 network showed substantial performance gains over the
other networks. While the 4-8-3 network appeared to have an
increase in noise and lower stability at the higher epoch count,
a t-test validates strong confidence in this better-performing
configuration. While a higher number of hidden nodes lead

NEURAL NETWORK EVALUATION

Fig. 3. Effects of Learning Rate and Momentum Rate on Iris Data Set

03

Mean Square Error

Effects of Learning Rate and Momentum Rate

Iris Data Set

0.05

1

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

e 2aming 0.2 Momentum 0.0
== | eaming 0.4 Momentum 0.0
==L eaming 0.6 Momentum 0.0
==L eaming 0.8 Momentum 0.0

Epoch

== Learming 0.2 Momentum 0.3
== Leamning 0.4 Momentum 0.3
=f=_Leaming 0.6 Momentum 0.3
=== Leaming 0.8 Momentum 0.3

=e=_Learning 0.2 Momentum 0.6
| garning 0.4 Momentum 0.6
=r=_earning 0.6 Momentum 0.6

Learning 0.8 Momentum 0.6

Fig. 4. Effects of Learning Rate and Momentum Rate on Cancer Data Set

035

Effects of Learning Rate and Momentum Rate

Cancer Data Set

Mean Square Error

0.05

o] T
1

20 40

==L eaming 0.2 Momentum 0.0
=== | eaming 0.4 Momentum 0.0
== eaming 0.6 Momentum 0.0
~Leaming 0.8 Momentum 0.0

60 80 100 120 140

220 240 260
Epoch

160 180 200

=fi=Leaming 0.2 Momentum 0.3
=@=_eaming 0.4 Momentum 0.3
==_earming 0.6 Momentum 0.3
~=Leaming 0.8 Momentum 0.3

280 300 320 340 360 380 400 420

440 460 480 500

=fe=Leaming 0.2 Momentum 0.6
==f==| garning 0.4 Momentum 0.6
=e=Learning 0.6 Momentum 0.6

Leaming 0.8 Momentum 0.6

NEURAL NETWORK EVALUATION

Fig. 5. BackProp - Effects of Hidden Nodes - Iris Data Set

o Effect of Hidden Nodes
Iris Data Set

"
/

o \
01 A

Fig. 6. BackProp - Effects of Hidden Nodes - Cancer Data Set

o Effect of Hidden Nodes
Cancer Data Set

to the optimal found configuration, it is curious as to why a
similar number of nodes across multiple hidden layers lead to
such early, poor convergence.

The cancer set (figure 6) shows a similar effect, showing
with strong confidence results which mirror those had on the
cancer set. While the difference in performance levels is not
as great, mirrored in our reduced ANOVA P-value, we still
show a strong 99% confidence level in benefit of a hidden
layer with count double that of the input layer. Similar to the
plateau seen with the iris set’s 4-4-4-3 network, the 9-9-9-2
network run on the cancer data set shows a similar plateau
effect, and begins to later increase in error. It seems likely
that the additional layer encourages overfitting of the training
data.

3) Activator Functions: While the number of potential acti-
vations is quite large, two of the more frequently encountered
neuron activation functions are the Sigmoid (or, logistic), and
Tanh functions [12]. We will compare neural networks where
every neuron within them uniformly uses a single activator
function. Blurb about activation functions.

It seems immediately clear from figures 7 and 8 that the
tanh function did not perform nearly as well as the sigmoid
function in BackProp for either of the data sets. An initial error
may have been expected, due to the increased distance to a

TABLE VIII
EXPERIMENTAL CONFIGURATION - BACKPROP ACTIVATION FUNCTIONS

Group | Activation Function
01 Sigmoid
02 TanH

Fig. 7. BackProp - Effects of Activation Function - Iris Data Set

Effect of Activation Function
Iris Data Set

——sigmoid ——TanH

possible expected 1.0 output from an initial -1.0 (contrasted in
sigmoid with 0.0). Despite accepting a higher initial error, the
network with the iris data was unable to overcome an initial
learning plateau. T-tests between functions on the two sets
gives strongly significant P-values of 0.002 and 0.007, despite
the heavy noise seen in the charted averages.

The tanh function has a (—1,1) range centred about 0.0,
as opposed to the sigmoid’s (0, 1) range about 0.5. As the
classification threshold has been fixed at 0.5, it would seem
likely that an adjustment to the threshold may be required
to improve performance while using tanh as an activation
function. The requirement of a threshold adjustment is un-
dermined somewhat by a weaker, or positive effect of the
activation function with other neural network variants such
as delta-bar-delta (as seen in figure 20). To examine the effect
of the threshold, we will examine the false negative rates of
the aggregate confusion matrices.

From the confusion matrices in table IX, we can see an

Fig. 8. BackProp - Effects of Activation Function - Cancer Data Set

07

Effect of Activation Function
Iris Data Set

0s

Epoch

——Sigmoid ——TanH

NEURAL NETWORK EVALUATION

TABLE IX
CONFUSION MATRICES - BACKPROP ACTIVATION FUNCTIONS

Iris Set - Sigmoid Iris Set - Tanh

T F T F
P | 302% 03.1% P | 104% 04.7%
N | 635% 03.1% N | 619% 22.9%
Iris Set - Sigmoid Iris Set - Tanh
T F T F
P | 47.0% 03.0% P | 47.0% 13.6%
N | 47.0% 03.0% N | 364% 03.9%

Fig. 9. BackProp - Effects of Holdout on Generalization Ability - Iris Data
Set

035

Effects of Holdout on Generalization
Iris Data Set

Square Error

Epoch

——1-FoldTraining = 1-Fold Testing 5-Fold Training ——5-Fold Testing

elevated amount of false negative for the tanh function on
the iris data set, but the hypothesis that the threshold should
be adjusted may be rejected after observation of an opposite
trend in the cancer data set. With the Breast Cancer Wisconsin
(Diagnostic) set, we actually see a stable false negative count,
but elevated false positive count in comparison to the sigmoid
runs when using tanh. While the cause is not immediately
clear, it would appear that the use of the tanh function may
encourage an early plateau in classification accuracy, possibly
with heaving oscillation.

4) Validation Methods: One concerning observation that
was made during previous experiments in the report was
overfitting of the training data which was marked by a raising
test error measure. Holdout is a critical technique that allows
a performance measure of the network in a more general
case. An additional technique often employed to maintain high
performance while minimizing overfitting is a k-fold cross
validation. We will compare both the testing and training
performance scores across a configuration using only a single
fold, and a configuration with 5 folds.

TABLE X
EXPERIMENTAL CONFIGURATION - BACKPROP VALIDATION METHODS

Group | Validation
01 | 1-fold with No Validation (Training Only)
02 | 1-fold with 30% Testing Holdout
03 | 5-fold with No Validation (Training Only)
04 | 5-fold with 30% Testing Holdout

One thing that is clear from the graphs in figures 9 and 10 is
that the testing error, after sufficient training time, will flatten

Fig. 10. BackProp - Effects of Holdout on Generalization Ability - Cancer
Data Set

Effects of Holdout on Generalization
Cancer Data Set

Epoch

= 1-fold Training ==1-Fold Testing 5-Fold Training ==—>5-Fold Testing

or even begin to raise as training performance improves. The
other problematic observation is in the noise and intersection
of training and testing data during the runs with the iris data
set. As confirmed from [8], short term characteristics of the
training and testing performance may not be sufficient to
determine an optimal stopping criteria.

An unexpected observation was that in both the iris and data
cancer sets, a significant classification performance gain on the
testing measures was found by using 5-fold cross validation. It
was initially expected that 5-fold cross validation may permit a
longer training duration before testing performance converged,
but it would appear that we had also achieved a quicker rate
of performance. This performance may only be superficial,
as the improvement to the iris set and cancer set hold P-
values of 0.33 and 0.44 respectively, which do not suggest any
strong significance at the current sample size. One hypothesis
may be that the additional folds, and thus additional models
to train, increased the likelihood of beginning with a better
initial network state. As the best performing model within the
folds is reported on, this skews the performance distribution
in its favour. The actual computing cost/benefit ratio may not
be reflected with this scheme.

B. Variant: RProp

The following experiments evaluate RProp performance
from tunable configuration changes.

1) Rates: Both a benefit and limitation of RProp is the lack
of necessary tunable rates. The method in which the RProp
update value is adjusted performs similar function to that of the
momentum concept. Further, as the sign of the error gradient
affects the learning behaviour, but not the magnitude, any static
learning rate factor is necessarily useless. RProp does use static
values for the positive and negative update value adjustments,
but these values have been empirically determined to perform
best at 1.2 and 0.5 respectively [5].

2) Hidden Nodes: The experiments with RProp use the
baseline configuration as with BackProp, with the obvious
exception of the learning methodology. Consequently, for
comparative analysis to BackProp, we will evaluate the per-

NEURAL NETWORK EVALUATION

Fig. 11. RProp - Effects of Hidden Nodes - Iris Data Set

RProp
Effect of Hidden Nodes
Iris Data Set

g
g
H

A, l FAY

W I 'IV\MA..‘N_._—_)
Vi :—-AJ—M‘ »
A
0

Fig. 12. RProp - Effects of Hidden Nodes Function - Cancer Data Set

05

RProp
Effect of Hidden Nodes
Cancer Data Set

Mean Square Error
°
p—"

formance of RProp using the same groups of hidden node
variations.

TABLE XI
EXPERIMENTAL CONFIGURATION - RPROP TOPOLOGIES

Group | Iris Set | Cancer Set
01 4-2-3 9-5-2
02 4-4-3 9-9-2
03 | 4-4-4-3 9-9-9-2
04 4-8-3 9-18-2

For all the various topologies used with RProp, performance
measures seemed to display a much larger amount of noise or
oscillation. This appears to be a consistent divergence from
BackProp based on the other experiments performed with
RProp, and may be a notable quirk of the algorithm (or perhaps
the specific implementation).

TABLE XII
ONE-WAY ANOVA SUMMARY - RPROP TOPOLOGY - IRIS

Source | SS dg MS F P

Treatment | 0.107 3 0.036 2.2 0.120
Error | 0.324 20 0.016
Total | 0.431 23

TABLE XIII
ONE-WAY ANOVA SUMMARY - RPROP TOPOLOGY - CANCER

Source | SS dy MS F P

Treatment | 0.096 3 0.032 1.57 0.228
Error | 0406 20 0.020
Total | 0.502 23

Fig. 13. RProp - Effects of Activation Function - Iris Data Set

14

RProp
Effect of Activation Function
Iris Data Set

Mean square Error

——sigmoid ——TanH

The high level of noise provides difficulty in performing
analysis at the early epochs, and any significance of the
analysis will be correspondingly reduced. Similar to BackProp,
the groups with reduced hidden nodes appear to flatten in the
middle epochs, though the cancer set does show some minor
improvements continue. In a complete contrast to BackProp,
where the 4-8-3 and 9-18-2 networks ranked best, the same
topologies appeared to rank worst with RProp. With the noise
on the graphs and the small sample size, the ANOVA P-
values are consequently reduced to 0.12 and 0.23 which do
not present the strongest confidence in the correlation. T-test
evaluations between the Iris 4-4-4 and the baseline confirm
this, though a 95% confidence level was found in the case of
the Cancer set’s 9-18-2 layout. In both the cancer and iris data
set evaluations, the single hidden layer with double neuron
count group had a marked increase in errors which should
signal significant overfitting as a prime culprit for the poor
performance.

3) Activator Functions: With the elevated noise seen the
previous experiment, concerns were present as to whether
the previously oscillating tanh function would exacerbate the
issue. Conversely, while high noise is seen in the early epochs,
error rates appears to flatten out and converge at around the
100th epoch for both data sets (see figures 13 and 14).

TABLE XIV
EXPERIMENTAL CONFIGURATION - RPROP ACTIVATION FUNCTIONS

Group | Activation Function
01 Sigmoid
02 TanH

In further contrast to the results found with BackProp, the
performance measures between sigmoid and tanh across both
data sets converged to similar levels. The first 50 epochs
with tanh did show a behaviour common to the BackProp

NEURAL NETWORK EVALUATION

Fig. 14. RProp - Effects of Activation Function - Cancer Data Set

RProp
Effect of Activation Function

Cancer Data Set

Mean Square Error

Epoch

—Sigmoid ——Tan

experiments, which was a notably higher initial level of error.
RProp appears to be capable of bypassing the early error
minima that was encountered with BackProp; the momentum-
like behaviour of RProp may be more suitable than the
baseline BackProp parameters when making use of the tanh
activation function.

TABLE XV
CONFUSION MATRICES - RPROP ACTIVATION FUNCTIONS

Iris Set - Sigmoid Iris Set - Tanh

T F T F
P | 28.0% 03.5% P | 184% 05.8%
N | 632% 053% N | 609% 14.9%
Cancer Set - Sigmoid Cancer Set - Tanh
T F T F
P | 49.5% 11.4% P | 379% 12.6%
N | 38.6% 00.5% N | 374% 12.1%

In continuing the hypothesis that tanh introduces threshold-
ing range issues, we can view the confusion matrices for the
RProp activation function experiments. Both iris and cancer
data sets display a minor rise in false positive count, and a
substantial rise in false negative count. As both data sets have
mutually exclusive classifications, we should expect an optimal
true negative rate of 66.6% for the iris data set and 50.0% for
the cancer set. Where sigmoid shows a slightly higher than
expected false positive count, the tanh experiments on RProp
show a slightly elevated count of false positives in comparison
to the expected count.

C. Variant: Delta-Bar-Delta

The following experiments evaluate Delta-Bar-Delta perfor-
mance from tunable configuration changes.

1) Rates: Where RProp had empirically optimal tunings for
how much its delta value was adjusted, no such measures have
been provided for the Delta-Bar-Delta growth and decay rates.
Sutton [4] has offered rates of 0.02 and 0.20 for growth and
decay respectively, and it is around these values that we will
experiment. Table X VI gives the listing of growth and decay
rate pairs evaluated.

With the performances of the groups being closely inter-
twined, it was unknown if any clear associations with the

TABLE XVI
EXPERIMENTAL CONFIGURATION - DELTA-BAR-DELTA RATES
Group | Growth Rate | Decay Rate
01 0.02 10%
02 0.02 30%
03 0.10 10%
04 0.10 30%

3

Fig. 15. Delta-Bar-Delta - Effects of Growth/Decay Rates - Iris Data Set

Delta-Bar-Delta

Effect of Growth/Decay Rates

Iris Data Set
i \\\\
o \K

Mean Square Error

——Growth 0,02 Decay 0.10

——Growth 0.02 Decay 0.30

Growth 0.10 Decay 010 ——Growth 0.10 Decay 0.30

TABLE XVII
Two-WAY ANOVA SUMMARY - DELTA-BAR-DELTA RATES - IRIS
Source | SS dy MS F P
Decay Rate | 0.01 1 0.01 10.0 0.0049
Growth Rate 0 1 0 0 1
Interaction 0 1 0 0 1
Error | 0.02 20 0
Total | 0.03 23

TABLE XVIII
Two-WAY ANOVA SUMMARY - DELTA-BAR-DELTA RATES - CANCER

Source | SS dy MS F P
Decay Rate 0 1 0 0 1
Growth Rate 0 1 0 0 1
Interaction 0 1 0 0 1
Error | 0.01 20 0
Total | 0.01 23

Fig. 16. Delta-Bar-Delta - Effects of Growth/Decay Rates - Cancer Data Set

o Delta-Bar-Delta
Effect of Growth/Decay Rates
Cancer Data Set

-

——Growth 0.02 Decay 0.10
Growth 0.10 Decay 0.10

——Growth 0,02 Decay 0.30

—— Growth 0.10 Decay 0.30

NEURAL NETWORK EVALUATION

Fig. 17. Delta-Bar-Delta - Effects of Hidden Nodes - Iris Data Set
° Delta-Bar-Delta
Effect of Hidden Nodes

Iris Data Set

a3t ——igaan

Nisaat ——tsgan

rates and performance could be found. Upon completion of
a two-way ANOVA for both data sets, one significant link
was found. The growth and decay rates did not appear to
correlate to any effect on performance with the Breast Cancer
Wisconsin (Diagnostic) data set. However, the iris data set had
a high significance correlation with the decay rate. The best
two results both utilized the higher decay rate of 0.3 . The
growth rate was still found to be without significance for the
iris data set with the baseline run count.

2) Hidden Nodes: In continuing a comparative analysis to
BackProp and RProp, we will evaluate the performance of
Delta-Bar-Delta learning methods using the same groups of
hidden node variations. In contrast to RProp, each of the
various topologies provide smooth performance curves with
clear separation (or coincidence) between the groups at early
and late epochs.

TABLE XIX
EXPERIMENTAL CONFIGURATION - DELTA-BAR-DELTA TOPOLOGIES
Group | Iris Set | Cancer Set
01 4-2-3 9-5-2
02 4-4-3 9-9-2
03 | 4-4-4-3 9-9-9-2
04 4-8-3 9-18-2

Consistent with the results found in the BackProp and
RProp experiments, the groups with reduced hidden nodes
flatten in the middle epochs. Delta-Bar-Delta appears to agree
with BackProp in that the 4-8-3 and 9-18-2 layer structures
provide the best performance. However, the 4-4-4-3 and 9-9-
9-2 structures give mediocre performance - not immediately
appearing to match the excellent RProp effectiveness nor
performing as poorly as the BackProp run with the same
topologies. The 9-9-9-2 layout did see some minor overfitting
and flattening at epoch 200.

TABLE XX
ONE-WAY ANOVA SUMMARY - DELTA-BAR-DELTA TOPOLOGY - IRIS
Source | SS dy MS F P
Treatment | 0.042 3 0.014 20.8 <0.0001
Error | 0.014 20 0.001
Total | 0.056 23

Fig. 18. Delta-Bar-Delta - Effects of Hidden Nodes Function - Cancer Data
Set

035

Delta-Bar-Delta
Effect of Hidden Nodes
Cancer Data Set

=Z

952" "9.9.2"

9.9.9.2" —mm"9.18.2"

TABLE XXI
ONE-WAY ANOVA SUMMARY - DELTA-BAR-DELTA TOPOLOGY -
CANCER

Source | SS dy MS F P

Treatment | 0.002 3 0.001 1.51 0.243
Error | 0.009 20 0.001
Total | 0.011 23

The two-way ANOVA for the hidden layer options on the
cancer data set showed a very mild significance, but the
performance measure for the iris data set were held with
high statistical confidence. For RProp, our baseline performed
admirably, with 4-8-3 still best, and 4-2-3 worst. With the
increasing improvements on the 4-4-4-3 data set in the last
epochs of the cancer data set evaluation, it could be interesting
to re-run the experiment for additional training iterations -
figure 17 may lead one to believe that 4-4-3 or 4-4-4-3
could overtake the flattening 4-8-3 due to their increased
performance in the last 100 epochs.

3) Activator Functions: The sigmoid and tanh functions
are lastly evaluated for both the iris and cancer data sets using
a delta-bar-delta learning variant. While initial error is high,
error appears to follow a smoother curve in comparison to
RProp or BackProp, though some oscillation is still present in
the iris set after flattening out at epoch 200.

TABLE XXII
EXPERIMENTAL CONFIGURATION - DELTA-BAR-DELTA ACTIVATION
FUNCTIONS

Group | Activation Function
01 Sigmoid
02 TanH

The tanh function finally appears capable of competing
with sigmoid. Despite starting at a much larger error, tanh
presented on the iris data set the ability to improve at a quicker
rate than sigmoid, and surpassed sigmoid’s performance for
200 epochs ending at around epoch 250 when performance
with tanh levelled off. With the cancer data set, tanh did not
improve at a significantly quicker rate than sigmoid, but was
able to continue improving at a slightly better rate at their
intersection in epoch 300. T-tests showed little significance in

NEURAL NETWORK EVALUATION

Fig. 19. Delta-Bar-Delta - Effects of Activation Function - Iris Data Set

5

Delta-Bar-Delta
Effect of Activation Function
Iris Data Set

—Sigmoid ——Tank

Fig. 20. Delta-Bar-Delta - Effects of Activation Function - Cancer Data Set

0s

Delta-Bar-Delta
Effect of Activation Function
Cancer Data Set

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

——sigmoid ——TanH

the results. While not an objective success for the function in
these applications, performance equality with sigmoid is the
best result the tanh activator function has received across the
neural network variants tested.

TABLE XXIII
CONFUSION MATRICES - DELTA-BAR-DELTA ACTIVATION FUNCTIONS

Iris Set - Sigmoid Iris Set - Tanh

T F T F
P | 324% 00.7% P | 294% 042%
N | 66.0% 00.9% N | 625% 03.9%
Cancer Set - Sigmoid Cancer Set - Tanh
T F T F
P | 482% 01.8% P | 487% 02.7%
N | 482% 01.8% N | 473% 01.3%

While the relative equality of the activation functions in
their use with the Delta-Bar-Delta learning method might have
suggested a lack of noteworthy observations in the confusion
matrix, it has been included for posterity. Expectantly, the
confusion matrix results offer no meaningful contributions to
the thresholding offset hypothesis.

V. CONCLUSION

The learning rate and momentum rate configurations offered
statistically significant performance variances. Best results
for both data sets were found with middle-range values for
learning rate and momentum rate. By using the principal of
momentum in the model, results were notably improved. In
the Delta-Bar-Delta learning method with the adaptive learning
rate, it was seen that the decay rate could have a significant
impact on performance, though the growth rate did not appear
to contribute significantly for the data sets used.

Methods to track and negate overfitting - the lack of
generalization - are critical for obtaining optimal results with
neural networks. Many of the experiments explored in this
report produced networks with some minor overfitting. In
some cases, such as in figure 12, the training could be
terminated much earlier and result in a better performing
network. The use of multiple folds did result in slightly better
networks, though it was not found to have been with any
high statistical significance. Similar performance benefits per
computer runtime cost may be found in re-training the same
neural network model.

Mixed results were seen in regards to variations in the
neural network topologies. Generally, the baseline (which used
a single layer of hidden neurons, the number of which was
identical to the input layer) performed reasonably well, and
halving the number of neurons in the hidden layer gave poor
results. Using an increased number of neurons, over 1 or
two hidden layers, was somewhat dependant on the learning
method to determine if better results could be had. Overfitting
seemed likely, and whether or not the network would first
achieve low error performance was somewhat inconsistent.
With the RProp results giving higher variance, it would seem
likely that an increase in neurons in the first neural net layer
would be advantageous for the data sets used in the problem.

A consistent advantage was found towards the groups of
models using the sigmoid function over tanh. In all but
one case, the sigmoid function clearly outperformed the tanh
function by decreasing error and reducing noise and variance.
At best, for the given data sets, the tanh function provided
equal performance to sigmoid. At worst, tanh converged to an
error level statistically higher than that of its competitor. For
the provided data sets, learning methods, and baseline con-
figurations, the sigmoid function offers increased performance
with greater reliability.

While some configuration options had clear victors which
clearly outperformed others, not all provided statistically
optimal choices. It is possible that an increased run size
could provide higher confidence for some of the run results.
Additionally, interdependence between other tunable values
could be explored.

NEURAL NETWORK EVALUATION

[1]

[2]

[3]

[4]
[5]
[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Michael Marshall R.A. Fisher. Uic machine learning repository - iris data
set. http://archive.ics.uci.edu/ml/datasets/Iris, 1936. [Online; accessed
2016-03-01].

David Aha. Uic machine learning repository.
http://archive.ics.uci.edu/ml/datasets.html, 1987. [Online; accessed
2016-03-01].

George Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303-314,
1989. [via Wikipedia].

Richard S Sutton. Adapting bias by gradient descent: An incremental
version of delta-bar-delta. In AAAI pages 171-176, 1992.

Martin Riedmiller and I Rprop. Rprop-description and implementation
details. 1994.

Nick Street, et al Uic machine learning reposi-
tory - breast cancer wisconsin (diagnostic) data set.
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+1995.
[Online; accessed 2016-03-01].

Tom M Mitchell et al. Machine learning, 1997.

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of
the trade, pages 55-69. Springer, 1998.

William M.K. Trochim. The t-test.
http://www.socialresearchmethods.net/kb/stat_t.php, 2006. [Online;
accessed 2016-03-01].

StatisticsHowTo Stephanie. Confidence interval: How to find a confi-
dence interval: The easy way! http://www.statisticshowto.com/how-to-
find-a-confidence-interval/, 2009. [Online; accessed 2016-03-01].
Huaiqgin Wu. Global stability analysis of a general class of discontinuous
neural networks with linear growth activation functions. Information
Sciences, 179(19):3432-3441, 2009. [via Wikipedia].

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Miiller. Efficient backprop. In Neural networks: Tricks of the trade,
pages 9—48. Springer, 2012.

David M. Lane. One-factor anova (between subjects).
http://onlinestatbook.com/2/analysis_of_variance/one-way.html, 2013.
[Online; accessed 2016-03-01].

Laerd Statistics. One-way anova. https:/statistics.laerd.com/statistical-
guides/one-way-anova-statistical-guide.php, 2013. [Online; accessed
2016-03-01].

Michael S Gashler and Stephen C Ashmore. Training deep fourier
neural networks to fit time-series data. In Intelligent Computing in
Bioinformatics, pages 48-55. Springer, 2014. [via Wikipedia].

Data School. Simple guide to confusion matrix terminology.
http://www.dataschool.io/simple-guide-to-confusion-matrix-
terminology/, 2014. [Online; accessed 2016-03-01].

